

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 34 (2009) 633-637

www.elsevier.com/locate/endm

On the Plane-Width of Graphs

Marcin Kamiński¹

Department of Computer Science Université Libre de Bruxelles, Belgium

Paul Medvedev 2

Department of Computer Science University of Toronto, Canada

Martin Milanič 3

FAMNIT and PINT University of Primorska, Slovenia

Abstract

Map vertices of a graph to (not necessarily distinct) points of the plane so that two adjacent vertices are mapped at least a unit distance apart. The *plane-width* of a graph is the minimum diameter of the image of the vertex set over all such mappings. We establish a relation between the plane-width of a graph and its chromatic number, and connect it to other well-known areas, including the circular chromatic number and the problem of packing unit discs in the plane.

 $Keywords:\$ plane-width, realization of a graph, chromatic number, circular chromatic number

¹ Email: Marcin.Kaminski@ulb.ac.be

² Email: pashadag@cs.toronto.edu

³ Email: martin.milanic@upr.si

1 Introduction

This is an extended abstract of [6]. Given a simple, undirected, finite graph G = (V, E), a realization of G is a function r assigning to each vertex a point in the plane such that for each $\{u, v\} \in E$, $d(r(u), r(v)) \geq 1$, where d is the Euclidean distance. The width of a realization is the maximum distance between the images of any two vertices. In this paper, we introduce a new graph invariant, called the **plane-width** and denoted by pw(G), which is the minimum width over all realizations of G. (To avoid trivialities we only consider graphs with at least one edge.)

Complete graphs. The problem of determining the plane-width of complete graphs K_n has previously appeared in the literature in different contexts: finding the minimum diameter of a set of n points in the plane such that each pair of points is at distance at least one [2], or packing non-overlapping unit discs in the plane so as to minimize the maximum distance between any two disc centers [7]. The exact values of $pw(K_n)$ are known only for complete graphs on at most 8 vertices. However, the asymptotic behaviour of $pw(K_n)$ has been determined.

Theorem 1.1 ([1,2,5])

$$\lim_{n \to \infty} pw(K_n) / \sqrt{n} = \left(2\pi^{-1} 3^{1/2} \right)^{1/2} \approx 1.05 \,.$$

The plane-width of K_4 is $\sqrt{2}$ and our first result is a generalization of this fact.

Proposition 1.2 The plane-width of every odd wheel is equal to $\sqrt{2}$.

2 Plane-width and chromatic number

Small chromatic number. For small values of the chromatic number, there is a strong relation between the plane-width of a graph and its chromatic number.

Theorem 2.1 For all graphs G,

- (a) pw(G) = 1 if and only if $\chi(G) \leq 3$,
- (b) $pw(G) \notin (1, 2/\sqrt{3}]$,
- (c) $pw(G) \in (2/\sqrt{3}, \sqrt{2}]$ if and only if $\chi(G) = 4$,
- (d) $pw(G) \in (\sqrt{2}, 2]$ if and only if $\chi(G) \in \{5, 6, 7\}$.

Fig. 1. Relation between pw and χ for small values of these invariants.

In particular, every bipartite graph has plane-width exactly 1. Also, every graph with maximum degree at most 3, different from the complete graph on 4 vertices, has plane-width exactly 1. (By Brooks's Theorem such graphs are 3-colorable.) The plane-width of every planar graph is at most $\sqrt{2}$ (as such graphs are 4-colorable), and the plane-width of graphs embeddable on a torus is at most 2 (as such graphs are 7-colorable).

Large chromatic number. We have already seen in Theorem 1.1 that $pw(K_n) = \Theta(\sqrt{n})$. We show, more generally, that the relation $pw(G) = \Theta(\sqrt{\chi(G)})$ holds for arbitrary graphs as $\chi(G) \to \infty$.

Lemma 2.2 For every $\epsilon > 0$ there exists an integer k such that for all graphs G of chromatic number at least k, it holds that $\chi(G) < \left(\left(\frac{2}{\sqrt{3}} + \epsilon\right) \cdot pw(G)\right)^2$.

Lemma 2.3 For all graphs G, $pw(G) \leq pw(K_{\chi(G)})$.

The two lemmas give a lower and an upper bound which are combined in the following theorem.

Theorem 2.4 For every $\epsilon > 0$ there exists an integer k such that for all graphs G of chromatic number at least k,

$$\left(\frac{\sqrt{3}}{2} - \epsilon\right)\sqrt{\chi(G)} < pw(G) < \left(\sqrt{\frac{2\sqrt{3}}{\pi}} + \epsilon\right)\sqrt{\chi(G)}.$$

Some questions regarding the plane-width of a graph can be answered via the chromatic number by applying Theorem 2.4. For instance, the plane-width of almost every random graph (in the $G_{n,p}$ model with a fixed $p \in (0,1)$) is $\Theta(\sqrt{n}/\log(n))$ (since the chromatic number of almost every random graph is $\Theta(n/\log(n))$ [3]). Another example is the existence of graphs of arbitrarily large plane-width and girth (as there are graphs of arbitrarily large chromatic number and girth [4]). **Open problem.** Let $\mathbb{P} = \{pw(G) : G \text{ is a graph}\}$. Determine whether there exists a function (a non-decreasing function) $f : \mathbb{P} \to \mathbb{Z}$ such that $f(pw(G)) = \chi(G)$ for every non-bipartite graph G.

3 Plane-width and circular chromatic number

The circular chromatic number $\chi_c(G)$ is a well-known graph invariant and can be seen as a refinement of the chromatic number. We establish a connection between the circular chromatic number and the plane-width.

Lemma 3.1 For all graphs G, $pw(G) \leq \left[\sin\left(\frac{\pi}{\chi_c(G)}\right)\right]^{-1}$.

This allows us to apply some known results on the circular chromatic number to prove the existence of graphs with certain plane-widths. Specifically, we obtain the following theorem, which should be viewed as complementing Theorem 2.1.

Theorem 3.2 For every $\epsilon > 0$ there exists

- (a) A 4-chromatic graph G such that $pw(G) < 2/\sqrt{3} + \epsilon$,
- (b) A 5-chromatic graph G such that $pw(G) < \sqrt{2} + \epsilon$,
- (c) An 8-chromatic graph G such that $pw(G) < 2 + \epsilon$.

4 Plane-width and graph operations

Homomorphisms and perfect graphs. Any graph with chromatic number $\chi(G)$ is homomorphic to $K_{\chi(G)}$. The following lemma generalizes Lemma 2.3.

Lemma 4.1 Let G be a graph homomorphic to a graph H. Then, $pw(G) \leq pw(H)$.

We denote by $\omega(G)$ the maximum size of a clique in G.

Corollary 4.2

- (a) For every graph G and its subgraph G', $pw(G') \le pw(G)$.
- (b) For every graph G, $pw(G) \ge pw(K_{\omega(G)})$.

These observations together with Lemma 2.3 imply that for graphs whose chromatic number coincides with their maximum clique size, their plane-width is a function of their chromatic number.

Corollary 4.3 Let G be a graph such that $\chi(G) = \omega(G)$. Then, $pw(G) = pw(K_{\chi(G)})$. In particular, if G is perfect, then $pw(G) = pw(K_{\chi(G)})$.

Cartesian product. Let $G \Box H$ be the Cartesian product of G and H. Corollary 4.2 implies that $pw(G \Box H) \ge \max\{pw(G), pw(H)\}$. In the following theorem, we provide an exact and an asymptotic upper bound on $pw(G \Box H)$.

Theorem 4.4

(a) For every two graphs G and H,

$$pw(G\Box H) \le pw(G) + pw(H)$$
.

(b) For every $\epsilon > 0$ there exists a p > 0 such that for every two graphs G and H of plane-width at least p,

$$pw(G\Box H) \le \left(\sqrt{\frac{8}{\sqrt{3}\pi}} + \epsilon\right) \max\{pw(G), pw(H)\}.$$

Disjoint union. Let $G \uplus H$ denote the disjoint union of G and H. By Corollary 4.2, we have $pw(G \uplus H) \ge \max\{pw(G), pw(H)\}$.

Theorem 4.5 For every two graphs G and H, we have that

$$pw(G \uplus H) \le \max\left(pw(G), pw(H), \frac{1}{\sqrt{3}}(pw(G) + pw(H))\right)$$

References

- P. Bateman and P. Erdős. Geometrical extrema suggested by a lemma of Besicovitch. American Math. Monthly, 58:306–314, 1951.
- [2] A. Bezdek and F. Fodor. Minimal diameter of certain sets in the plane. J. Comb. Theory, Ser. A, 85:105–111, 1999.
- [3] B. Bollobás. The chromatic number of random graphs. Combinatorica, 8:49–55, 1988.
- [4] P. Erdős. Graph theory and probability. Canad. J. Math. 11:34–38, 1959.
- [5] P. Erdős. Geometry and Differential Geometry, Lecture Notes in Mathematics 792, Chapter: Some combinatorial problems in geometry, pages 46–53. New York: Springer-Verlag, 1980.
- [6] M. Kamiński, P. Medvedev and M. Milanič. The plane-width of graphs. arXiv:0812.4346v1
- [7] A. Schürmann. On extremal finite packings. Discrete Comput. Geom., 28:389–403, 2002.