
A Self-Coordinating Approach to Distributed Fair
Queueing in Ad Hoc Wireless Networks

Haiyun Luo, Paul Medvedev, Jerry Cheng, Songwu Lu
UCLA Computer Science Department

Los Angeles, CA 90095-1596
Emails: fhluo, pashadag, chengje, slug@cs.ucla.edu

Abstract— Distributed fair queueing in shared-medium ad hoc wireless
networks is non-trivial because of the unique design challenges in such net-
works, such as location-dependent contention, distributed nature of ad hoc
fair queueing, channel spatial reuse, and scalability in the presence of node
mobility. In this paper, we seek to devise new distributed, localized, scalable
and efficient solutions to this problem. We first analyze an ideal centralized
fair queueing algorithm developed for ad hoc networks, and extract the
desired global properties that the localized algorithms should possess. We
then propose three localized fair queueing models, in which local schedulers
self-coordinate their local interactions and collectively achieve the desired
global properties. We further describe a novel implementation of the pro-
posed models within the framework of the popular CSMA/CA paradigm
and address several practical issues. Our simulations and analysis demon-
strate the effectiveness of our proposed design.

I. INTRODUCTION

The explosive growth of the Internet and the convergence of
wireless communication and networking have jump-started sev-
eral wireless networking technologies such as MANET, blue-
tooth and sensor networks. These emerging wireless technolo-
gies are envisioned to support a rich set of data applications,
e.g., both error-sensitive and delay-sensitive applications, over
the bandwidth-constrained wireless medium. With this vision
in mind, the issue of providing fair and bounded delay chan-
nel access among multiple contending hosts over a scarce and
shared wireless channel has come to the fore. Fair queueing has
been a popular paradigm to achieve this goal in both wireline
and packet cellular networking environments [1]–[9]. However,
the problem of designing fully distributed, scalable, and efficient
fair queueing algorithms in the shared-channel ad hoc wireless
network remains largely unaddressed because of the unique is-
sues in such networks. These issues include location-dependent
contention, distributed nature of ad hoc fair queueing, channel
spatial reuse, and how to manage a potential large number of
flows in a dense and mobile network graph.

Two recent related works [10], [12] have formulated the prob-
lem of fair packet scheduling in ad hoc networks and addressed
some of the issues raised above. In each work, the authors have
proposed an ideal centralized fair queueing model by assum-
ing a centralized scheduler and perfect knowledge of each flow
in the entire network topology, and then designed a distributed
implementation to approximate the idealized model. Therefore,
the focus of these two works has been the problem formulation
and an appropriate ideal centralized model for fair queueing in
shared-channel multihop wireless networks. As a consequence,
the distributed implementation proposed in these papers can at
best conceptually approximate the proposed centralized model.

In essence, the unique characteristics of ad hoc wireless net-
works such as location-specific contention create spatial cou-
pling effects among flows in the network graph, and the fun-
damental notion of fairness may require non-local computation
among contending flows. Adding these features together, fair

queueing in shared-channel multihop wireless environments is
no longer a local property at each output link and has to exhibit
global behaviors; this has to be achieved through distributed and
localized decisions at each node.

In this paper, we re-examine the problem of distributed fair
packet scheduling in a shared-medium multihop wireless net-
work. If fair packet scheduling is indeed a distributed compu-
tation problem by its nature, an ideal centralized model cannot
lead us too far except provide us a possibly unachievable per-
formance bound. Therefore, we take a different approach in this
work: we analyze an ideal centralized fair queueing algorithm
in ad hoc networks, and extract the desired global properties
from it. Our goal is to devise distributed and localized solutions
such that local schedulers must self-coordinate their local in-
teractions to achieve the desired global behavior. To this end,
we propose a suite of fully distributed and localized 3-D (2D of
the graph topology and 1D in the time domain) fair queueing
models that use local flow information and perform local com-
putations only, and describe our implementation of these models
within the popular CSMA/CA paradigm. Through both simula-
tions and analysis, we show that these local fair queueing mod-
els perform locally coordinated scheduling decisions and collec-
tively achieve desired global properties such as fairness, scaling
and network efficiency.

Two key contributions of this paper are the following: (a)
a suite of fully distributed and localized fair queueing models,
which collectively exhibit desirable global fairness properties;
and (b) a novel table-driven distributed implementation within
the framework of CSMA/CA paradigm. Our simulations and
analysis demonstrate that our proposed approach provides a lo-
calized, scalable, and efficient solution to distributed fair queue-
ing in ad hoc networks.

The rest of the paper is organized as follows. Section II de-
scribes the network model and identifies the key design chal-
lenges for ad hoc fair queueing. Section III analyzes a central-
ized algorithm, extracts desired global properties for distributed
fair queueing algorithms, and proposes a suite of distributed and
local fair queueing models in an ad hoc network. Section IV
describes a distributed implementation of the model. Section V
presents a simulation-based performance evaluation of the pro-
posed algorithm. Section VI provides some discussions and de-
scribes related work, and Section VII concludes the paper.

II. MODELS AND ISSUES

A. Network Model

In this paper, we consider a packet-switched multihop wire-
less network in which the wireless medium is shared among
multiple contending users, i.e., a single physical channel with
capacity C is available for wireless transmissions. Transmis-
sions are locally broadcast and only receivers within the trans-

A B

DE

F C

F1

F2

F3
F4

F5

F6

F2F1

F5

F3F6

F4

Original Topology Flow Graph

Fig. 1. Location-dependent contention

mission range of a sender can receive its packets. Each link-
layer packet flow is a stream of packets being transmitted from
the source to the destination, where the source and destination
are neighboring nodes that are within transmission range of each
other1. Two flows are contending with each other if either the
sender or the receiver of one flow is within the transmission
range of the sender or the receiver of the other flow 2 [13].

We make three assumptions [13]–[17]: (a) a collision occurs
when a receiver is in the reception range of two simultaneously
transmitting nodes, thus unable to cleanly receive signal from
either of them; we ignore capture effect in this work, (b) a
node cannot transmit and receive packets simultaneously, and
(c) neighborhood is a commutative property; hence, flow con-
tention is also commutative.

In the following, we do not consider non-collision-related
channel errors. For simplicity of presentation, we only consider
fixed packet size in this paper, which is a realistic assumption in
typical wireless networks. Our proposed models work equally
well for the variable-packet-size case, and we will come back to
this point in Section VI.

B. Issues of Fair Queueing in Ad Hoc Networks

Fair packet scheduling in ad hoc wireless networks is non-
trivial because of two unique challenges of such networks:

(a) Location-dependent contention Since wireless transmis-
sions are locally broadcast, collisions and contention for the
shared medium, are location dependent. Consider the example
shown in Figure 1, which shows a six-node network graph and
each arrow-line denotes a packet flow from the sender to the re-
ceiver. Flow F1 contends with flows F2; F3; F5; F6; since these
four flows are within the transmission range of either the sender
or the receiver of flow F1. Therefore, these four flows should
restrain from transmissions when F1 transmits. Similarly, Flow
F2 contends with flows F1; F3; F4; F6. Hence, each flow has a
different contending flow set depending on its location.

Location-dependent contention, together with the multi-hop
nature of an ad hoc network, also allows for channel spatial
reuse. Specifically, any two flows that are not interfering with
each other can potentially transmit data packets over the phys-
ical channel simultaneously. Consider the example of Figure
1 again. Flows F1 and F4 are not contending with each other,
and they can transmit concurrently, thus enabling channel spa-
tial reuse.

Location-dependent contention as well as spatial reuse brings
new issues to packet scheduling in ad hoc networks. In a wire-
line or packet cellular network, packets are scheduled indepen-
dently at each output link. The scheduler at a link only needs

1As in wireline fair queueing, multi-hop flows are treated as multiple single-
hop flows.
2Following the CSMA/CA medium access paradigm, we assume that data

transmission will be preceded by a control handshake. Thus the nodes in the
neighborhood of both the sender and the receiver must defer transmission to
ensure a successful handshake.

to consider flows that are contending for that link, and no co-
ordination efforts are needed for scheduling decisions made at
neighboring nodes. Therefore, fair queueing model defined for
such networks is, in essence, a local property for transmitting
flows over each link, and fair queueing algorithms ensure lo-
cal fair sharing of bandwidth (as defined by the fairness model)
in the time domain among contending flows that share a single
link.

In a shared-medium multihop wireless network, location-
dependent contention generates coupling effects among flows
in a network graph. Hence, flow scheduling is no longer a lo-
cal decision, and such decisions cannot be made with respect to
“local” flows alone and be done independent of other neighbors.
Fair queueing becomes a 3-dimensional problem; it should be
performed in both the time domain and the spatial domain. It
needs coordinated design among neighbors.

(b) Distributed nature of ad hoc fair queueing In wireline
networks, a switch is making scheduling decisions for its packet
flows and it has direct access to the exact flow information, e.g.,
which flow has outstanding packets, when packets for a partic-
ular flow arrive and how many packets are waiting in the queue
at any instant. In a packet cellular network, the base station is
the natural logical choice for the scheduling entity in the cell,
and the base station can access uplink flow information with the
help of other supporting mechanisms, e.g., through MAC-layer
techniques [5].

In an ad hoc network, contending flows may originate from
different sending nodes, and each node needs to implement a
local scheduler for its transmitting flows. Hence, no single log-
ical entity for scheduling of these flows in the network graph
is available. Besides, the flow information is “spreaded” out in
these sending nodes, and each sender does not have direct access
to other flows’ information at other senders. Consider Figure 1
again, each of the six senders A – F does not know the packet-
level flow information at the other nodes. This illustrates that
ad hoc fair queueing is a distributed computation problem by its
nature.

C. Design Requirements for Fair Queueing in Ad Hoc Networks

In essence, wireless fair queueing in an ad hoc network is in-
herent global computation. This is due to the fact that location-
specific contention, together with the notion of fairness, cre-
ates global coupling effects in the entire connected graph. Any
scheduling decision made at a node may generate global domino
effects in a connected graph. Hence, packet scheduling design
cannot be isolated at each node. The notion of fairness must
be defined with respect to at least a set of contending flows, if
not all flows in the connected network graph. In addition, fair
scheduling is a distributed computation problem and the pro-
posed solution has to be fully distributed and localized. Thus,
any distributed and localized solution to ad hoc fair queueing
must coordinate their local interactions in order to achieve the
desired global properties. This should be achieved within the
constraints imposed by the networking environment.

Therefore, any fair packet scheduling algorithms proposed for
multihop wireless networks must meet the following five strin-
gent design requirements:

� The solution must be fully distributed, and it involves only
local computations by using local information only.
� The solution must exhibit desired global behavior, e.g., fair-
ness property.

� The solution must be scalable. The number of nodes in the ad
hoc network can be large and the target can be a dense network,
the solution should scale well in the presence of a large number
of nodes and a dense graph. Besides, the solution should equally
scale well in the presence of frequent node mobility and failures.
� The solution must be efficient. Because of channel spatial
reuse, the selection of simultaneous transmitters thus determines
the aggregate channel utilization. Hence, the packet scheduling
discipline needs to perform a judicious selection of such simul-
taneous transmissions in order to increase spatial reuse, while
taking into account fairness considerations across flows.
� The design must be coordinated among interacting nodes.
The nature of location-specific contention implies that, any
scheduling decision made at a node may have global impact and
incur domino effects in the entire connected network graph. As
a result, packet scheduling in such a network has to be coor-
dinated among neighbors that have contending flows, and this
coordination should be conducted in both the time domain and
the spatial domain.

III. A SELF-COORDINATING APPROACH TO AD HOC FAIR
QUEUEING

In this section, we will develop a suite of novel distributed
fair queueing models for ad hoc wireless networks.

A. Desired Global Properties

In order to develop localized models for distributed fair
queueing in ad hoc networks, we first analyze an ideal central-
ized algorithm. Our purpose is to extract several desired global
properties that the localized model should possess.

A.1 Flow graph versus node graph

To facilitate presentation, we first convert packet flows in a
generic network topology into a flow graph. The flow graph
precisely characterizes the spatial-domain, as well as the time-
domain, contention relationship among transmitting flows. In
a flow graph, each vertex represents a backlogged flow, and an
edge between two vertex denotes that these two flows are con-
tending with each other. If two vertices are not connected, these
two flows can transmit simultaneously, thus spatial reuse is pos-
sible. Therefore, the flow graph explicitly describes which flows
are contending and which flows can be concurrently transmit-
ting. As an example, Figure 1 shows the flow contention graph
for the six flows in the node graph.

A.2 What a centralized fair queueing model can do

Let us first re-visit an ideal centralized fair queueing algo-
rithm designed for ad hoc networks. We start with the popular
Start-time Fair Queueing (SFQ) [4] algorithm, which serves as
the basis and has been further adapted to the ad hoc wireless net-
works in related works [10] [12]. In SFQ, each arriving packet
is assigned two tags: a start tag and a finish tag. Specifically, a
packet with sequence number k of flow f arriving at time A(t fk)
is assigned two tags: a start tag Sfk and a finish tag F f

k , defined
as follows:

Sfk = maxfV (A(tfk)); F
f
k�1g; F f

k = Sfk + Lp=rf (1)

where Lp denotes the packet size in bits, and V (�) is the system
virtual time, taken to be the start tag of the packet currently be-
ing served in the scheduler during any busy period. Then, SFQ

selects the flow with the minimum service tag (i.e., the start tag)
at the moment and transmits its head-of-line packet.

Now let us adapt SFQ to the ad hoc networking environment.
Here is a brief summary of the proposed modifications to SFQ
in order to address ad hoc wireless networking issues [10] [12]:
� On tagging: for all the flows in the connected graph, we can
still use the same tagging mechanism as SFQ. However, the
propagation of system virtual time V (t) to every flow in the net-
work is a non-trivial issue 3.
� Scheduling: The scheduling decision serves two purposes: (a)
the scheduler needs to select the flow fmin with the smallest
start tag for its next packet transmission, in order to ensure a
basic fair share for every flow; (b) in addition to flow fmin,
the scheduler selects multiple non-interfering flows for concur-
rent transmissions in order to increase spatial reuse. In part (b),
different centralized algorithms may have different policies for
channel spatial reuse. [10] selects flows that are not interfering
with fmin, starting from those with smallest service tags at t.
[12] seeks to maximize spatial reuse and selects flows that solve
a corresponding minimum-coloring problem.

A.3 Existing approach to approximating the centralized algo-
rithm

Existing distributed algorithms seek to approximate the above
centralized algorithm within the framework of CSMA/CA MAC
protocol [10] [12]. These approximations are based upon the
following observations on the above centralized algorithm:
� On tagging: If each flow f can “hear” or learn an approxi-
mation of V (t) in the system, i.e., the start tag of the flow that
is currently being served by the local scheduler, then f can as-
sign both the start tags and the finish tags for its packets using
(1). This way, flow f does not need to know exact information
on other flows. However, the cost to pay is that V (t) is not the
global system virtual time, it is only valid locally, since each
flow can at most learn its two-hop (i.e. both the sender and the
receiver) neighborhood in the node graph.
� Scheduling: The scheduler needs to select the flow with the
smallest service tag for its next packet transmission. In order
to achieve this, at each node n, it sets a backoff interval Bf for
each backlogged flow f before it transmits a packet of flow f .
The backoff value Bf (t) is set to be Bf (t) = � � (Sfk � V (t)),
where Sfk is the service tag of the head-of-line packet of flow
f , and � is a constant. This way, the flow with smallest service
tag at t will transmit first (since it has smallest backoff period
Bf (t)), and other contending flows will restrain from transmis-
sions once they hear that flow f is transmitting through carrier
sensing. In addition, flows that are not interfering with f will
transmit concurrently, starting from the one with smaller back-
off value.

At a first glance, it seems that the above approach works
well as an elegant distributed implementation of fair queueing
in such environments. However, a more careful examination re-
veals four limitations of this approach in a large ad hoc wireless
network:
� (a) Local virtual time �V (t) versus global system virtual time
V (t): in an ad hoc network, each node can only learn at best
the start tag of the transmitting packet in its local neighbor-
hood, thus the �V (t) that it hears is in general different from the
global system V (t) as required by (1) in a large ad hoc network.

3In another recent work [18], the authors also proposed a local fairness model
in a different context. In the local fairness model, each flow’s virtual time Vf (t)
is defined only with respect to the one-hop neighboring flows in the flow graph.

This brings inaccuracy for the approximation as well as creat-
ing ambiguity in the setting of the backoff interval for each flow
(i.e., each backoff is set with respect to different reference vir-
tual time). This may lead to unbounded unfairness (see Section
III-B.2 for an example).
� (b) Problems with backoff setting: at any time t, if there ex-
ists either significantly large or only minor difference of B f (t)
among flows (e.g., caused by large difference in flow weights),
then the backoff-based approach results in either large system
overhead (by waiting for an extended period of backoff interval)
or potential collisions (due to inability to detect other transmis-
sions). Besides, it may also need fine-grain timer support.
� (c) Global synchronization: in order for the above backoff
approach to work well, global synchronization is needed such
that all flows will tick their backoff timer simultaneously. With-
out global synchronization, it cannot accurately approximate the
centralized algorithm.
� (d) Potential unbounded flow unfairness in the system: due to
channel spatial reuse, certain flows will always transmit (con-
currently with the flow of smallest service tag) more often than
others, and the above approach cannot always bound the unfair-
ness bound between any two flows in the system. We further
elaborate this point later.

A.4 Extracting desired global properties

However, the centralized algorithm described in Section III-
A.2 is still very useful to help us in extracting several global
properties that we would like our localized model to possess:
� Minimum fair share: Our fairness for each flow f is still mea-
sured with respect to its flow weight rf . That is, each flow is
served in proportional to its flow weight in its local scheduler.
To ensure minimum fair share for each flow in the connected
flow graph, the flow that receives the minimum normalized ser-
vice (normalized according to its flow weight rf) must transmit
first. Equivalently, the flow with the global minimum service tag
at t should always transmit before other flows. This is what we
called “maximize global minimum” property.
� Increasing channel spatial reuse: since wireless channel is
bandwidth constrained, the proposed model should encourage
concurrent transmissions as much as possible. This way, the
aggregate network channel utilization is improved.
� Bounding unfairness if needed: While channel spatial reuse
increases network efficiency, it may cause certain flows’ ser-
vices unbounded in some topological scenarios, to be shown
in later Section III-B.2. Some have argued that channel spa-
tial reuse should be encouraged whenever it is possible (even
at the risk of unbounded unfairness) as long as each flow re-
ceives a basic fair share [18]. However, for the purpose of sim-
ple accounting and in certain application scenarios, we may still
want to limit flow unfairness. Therefore, in our design, we pro-
vide the option of bounding a flow’s unfairness. Specifically,
for any two backlogged flows f and g in a local neighborhood,
the aggregate services that they receive during [t1; t2] satisfy:
j
Wf (t1;t2)

rf
�

Wg(t1;t2)

rg
j � Æ where Æ is a constant that character-

izes the unfairness bound. Effectively, this requirement leads to
long-term fairness for backlogged flows.

In addition, the proposed model should also possess the fol-
lowing scaling property, which is important in a large-scale or
dense network:
� Scaling property: the proposed model should scale well in the
presence of a large number of nodes/flows and in a dense graph.
In order to achieve this, each node should maintain only local
information and perform local scheduling computation.

B. A Self-Coordinating Fair Queueing Model

We now describe a self-coordinating approach to distributed
fair queueing in ad hoc networks. The proposed model is fully
decentralized and localized, and possesses all the desired global
properties that are identified in Section II-A.4. Our model is
self coordinating in the sense that each local scheduler will co-
ordinate its local interactions with its neighbors in order to ex-
hibit the desired global behavior. This is achieved without global
computation or global information propagation.

B.1 Overview of the proposed model

In the model, each network node maintains a local table, and
the table records information of all flows in its one-hop neigh-
borhood in the flow graph. Each node is responsible for as-
signing tags and scheduling flows that originate from it, and
for recording flow tags for other flows in its locality. It still
uses SFQ to assign start tags and finish tags for the flows. Be-
sides, in each table entry, we record the following information:
[flow id; flow tag], where the flow tag is the most recent
service tag that the node hears for flow flow id.

Our proposed model uses three mechanisms to achieve the
global properties through coordinations of local interactions at
each node:
� Maximizing local minimum by transmitting flows with local
minimum service tags: a node immediately transmits a flow only
if this flow has the minimum service tag flow tag among all
backlogged flows in its table.
� Using the backoff mechanism to increase spatial reuse: if a
flow does not have the local minimum service tag in its one-hop
flow neighborhood, we still set a backoff timer for this flow in
order to increase channel spatial reuse. Once the backoff timer
expires and the channel is idle, the flow will transmit. Further-
more, we tailor the flow’s backoff value setting to both the flow’s
local fairness (i.e., its received service compared to its neigh-
bors) and its local contention degree (i.e., the number of con-
tending flows in its neighborhood) in the flow graph.
� Using a sliding window to limit the unfairness bound as an
option: each node may maintain an upper bound Æ for flow un-
fairness; whenever any flow’s service tag reaches beyond what
is allowed by Æ, the flow is restrained from transmissions tem-
porarily.

We now describe these three mechanisms in more details.

B.2 Three mechanisms in the model

1. Maximizing local minimum
As observed in Section III-A.4, in order to ensure minimum

fair share for each flow, the flow with the global minimum ser-
vice tag in the entire network must be selected for transmission
before any other flows. Note that this is a non-trivial issue in a
distributed fair queueing model, since identifying the flow with
the global minimum service tag in general requires sorting all
flows in the entire network graph and it is a global computation.
Therefore, how to use local information and local computation
only to achieve this goal becomes a severe design challenge.

In this paper, we take a novel approach to identifying the flow
with global minimum service tag. Since identifying a global
minimum involves global search that cannot avoid global com-
putation, we identify all flows with local minimum service tags,
and schedule all such flows for transmission. This is what we
called maximizing local minimum policy. As far as service tag is
concerned, since the global minima must be a local minima (but
not vice versa), we know that the flow with the global minimum

0
10

20
30

40
50

0
10

20
30

40
50

−10

−8

−6

−4

−2

0

2

4

6

8

se
rv

ic
es

Fig. 2. A 3-D Distributed Fair Queueing Model

tag must be among these transmitted flows that have local min-
imum tags and it is guaranteed to be transmitted first. Hence,
“maximizing local minimum” policy is a superset of the “maxi-
mizing global minimum” policy, but not verse versa.

We can also draw our model to an analogy of the 3-
dimensional model shown in Figure 2, which illustrates 2-D in
the spatial domain, and 1-D characterizes the aggregate service
received up to t (time domain). Our proposed model is similar
to the phenomenon that a rain storm washes a three-dimensional
terrain: the water always fills in the three lowest (local) spots
first in the Figure (marked with a � sign in the figure). Once
the lowest spots have been filled, it starts to fill other new lowest
points in the terrain.

2. New backoff mechanism to increase spatial reuse

From the rain storm analogy shown above, we see that if wa-
ter only fills in the lowest local spots each time, it takes a long
time to make the entire terrain drenched by the water and be-
come “flat” eventually. The same thing is true for distributed
fair queueing. The “maximizing local minimum” policy alone
may result in very low aggregate network utilization in a large
network topology. Note that while water flows into the low-
est spots faster, some water will also rinse higher-attitude ter-
rains. We will increase spatial reuse in ad hoc fair queueing the
same way. To do this, we need to simultaneously schedule other
non-interfering flows. Note that channel spatial reuse is location
specific and is dependent on how many flows are contending at
a particular position in the graph. We will use a backoff-based
mechanism to achieve this. The novelty in our model is that
we tailor the backoff setting to both the local contention degree
(i.e., how many flows contend with a flow; this is equivalent to
its degree in the flow graph) and the fairness model.

Specifically, for any flow f , we set its backoff value to be the
total number of flows that have smaller service tags (i.e., start
tags) than flow f . Three properties of this policy are: (a) the
backoff value is decoupled from the numerical difference in vir-
tual times, this removes limitation (b) described in Section III-
A.3; (b) it gives higher priority to flows that have received less
fair services than flow f (i.e., they have smaller service tags);
and (c) the backoff is also tailored to current contention level in
flow f ’s current location (i.e., how many flows are contending
with f). Also note the minimum-service-tag flow has a backoff
value 0, thus having the highest priority for local channel access.

3. Sliding window to Limit flow unfairness if needed

However, if we encourage spatial reuse whenever we can, to-

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

F1

F2

 F3

F4

F5

Fig. 3. Spatial reuse may cause unbounded flow unfairness

gether with the “maximizing local minimum” policy, the aggre-
gate service received by each flow may not be in proportional to
its flow weight. Consider a simple example in Figure 3, where
there are five flows with identical weight 1. It is easy to see
that over a long term, flow F5 will receive three times of ser-
vice compared to other flows. This is because F5 can always
transmit simultaneously with one of flows F1; F2; F3 through
spatial reuse. Therefore, flow unfairness for F5 may become
unbounded due to channel spatial reuse. In order to limit the
unfairness bound if needed, we provide a sliding window mech-
anism at each node as an option.

At any time instant, each node schedules packets of a flow
within a sliding window � (defined in virtual time), to increase
channel spatial reuse. However, when flow f ’s service tag ex-
ceeds the window, it stops in order to bound unfairness.

C. Model Description

In this section, we describe the three models in algorith-
mic details, that progressively incorporate the three mechanisms
described above and we name as “Maximize-Local-Min Fair
Queueing” (MLM-FQ), “Enhanced-Maximize-Local-Min Fair
Queueing” (EMLM-FQ), and “Bounded-Fair Maximize-Local-
Min Fair Queueing” (BFMLM-FQ), accordingly. The MLM-FQ
model implements the “maximize-local-minimum” policy only,
while EMLM-FQ in addition implements the backoff-based spa-
tial reuse mechanism, and BFMLM-FQ implements all three.

We only present BFMLM-FQ algorithm here as a complete
description of all three proposed mechanisms. The detailed op-
erations consist of four parts:
1. Local state maintenance: Each node nmaintains a local table
En, which records each flow’s current service tag for all flows
in its one-hop neighborhood of the flow graph. Each table entry
has the form of [f; Tf], where Tf is the current service tag of
flow f , i.e., the most recent start tag of flow f .
2. Tagging operations: For each flow f in the local table, we
simulate the SFQ algorithm to assign two tags for each arriving
packet: a start tag and a finish tag. Specifically, for the head-of-
line packet k of flow f , which arrival time is A(tfk) and packet
size is Lp, its start tag S

f
k and finish tag F

f
k are assigned as

follows:
(a) If f is continually backlogged, then

Sfk = F f
k�1; F f

k = Sfk + Lp=rf :
(b) If f is newly backlogged, then

Sfk = maxg2SfVg(A(t
f
k))g; F f

k = Sfk + Lp=rf ; where
S consists of all flows stored in the table of node n, and Vg(t) is
flow g’s virtual time at t.
3. Scheduling loop: At node n, whenever it hears that the chan-
nel is clear,

(a) if one of flows, say f , whose sender is n, has the smallest
service tag in the table En of node n, transmit the head-of-line
packet of flow f immediately;

(b) otherwise, for each flow f with n as its sender, if Tf <

R3

S3

S4 R4

S2

R2

S1R1

F4

F2

F3

F1

Fig. 4. An illustrative example

F2: T2=2
F3: T3=3

F1: T1=1

F1: T1=11
F2: T2=2
F3: T3=3

backoff=2

F1: T1=1
F2: T2=2
F3: T3=3

F1: T1=1
F2: T2=2
F3: T3=3

F2: T2=2
F3: T3=3

backoff=2

1

F4: T4=14

backoff=0

1

F4: T4=14

backoff=1

F4: T4=14

backoff=0

F1: T1=1
F2: T2=2
F3: T3=3
F4: T4=4

backoff=1

F1: T1=1
F2: T2=2
F3: T3=3
F4: T4=4

backoff=2

F2: T2=2
F3: T3=3
F4: T4=4

backoff=2

F1’s table F2’s table F3’s table F4’s table

F1’s table F2’s table F3’s table F4’s table

Before F1 and F4 transmit

After F1 and F4 transmit (assume packet_size/weight=10):

Fig. 5. How our algorithm works

Vmin + Æ (where Æ is the sliding window size and Vmin is the
virtual time at node n, defined as the minimum service tag
in table En), set the backoff period Bf of flow f as Bf =P

g2S I(Tg(t) < Tf (t)) minislots, where I(x) denotes the in-
dicator function, i.e., I(x) = 1; if x > 0; I(x) = 0, otherwise.

(c) if flow f ’s backoff timer expires and the channel is idle,
transmit the head-of-line packet of flow f .
4. Table updates: whenever node n hears a new service tag T

0

g

for any flow g on its table En, it updates the table entry for flow
g to [g; T

0

g]. Whenever node n transmits a head-of-line packet
for flow f , it updates flow f ’s service tag in the table entry.

We provide an illustrative example to show how our algorithm
works in Figure 4. In the example, we have four flows and the
dotted line denotes the two nodes are within the communication
range. Let us assume that the initial virtual time V = 0, and the
initial service tags for the four flows are T1 = 1; T2 = 2; T3 =
3; T4 = 4: The table maintained at each sender of the four flows
and the backoff calculated for each flow are shown in Figure 5.

D. Analytical Properties of the Model

In the following, we briefly characterize the properties of the
proposed model. Due to space constraints, we only outline the
proofs.

Proposition III.1: (bounded flow unfairness of MLM-FQ) In
a connected network graph, if each network node adopts the
“Maximize-local-minimum” fair queueing (MLM-FQ) model,
then for any two backlogged flows f and g in the network, their
received servicesWf (t1; t2) andWg(t1; t2) during time interval
[t1; t2] satisfy:

j
Wf (t1; t2)

rf
�
Wg(t1; t2)

rg
j < � (2)

where rf is flow f ’s weight, and � is a topology-dependent
constant.
Proof: The proof is based on mathematical induction for any
two nodes in the connected graph, and the fact that a flow re-
ceiving global minimum (normalized) service must be a local
minimum too. 2

Corollary III.1: (Long-term fairness of MLM-FQ) For any
continually backlogged flow f , the MLM-FQ model achieves
long-term fairness for flow f :

lim
t!1

Wf (0; t)

t
= rf=kf (3)

where kf is a topology-dependent constant.
Proposition III.2: (Minimum fair share for each flow in the

network) Each of the three models MLM-FQ, EMLM-FQ and
BFMLM-FQ guarantees that each continually backlogged flow

f receives a minimum fair share of the channel C. That is,

Wf (t1; t2) � C
rf

k
P

g2S rg
(t2 � t1)� � (4)

where k and � are two topology-dependent constants, and S
denotes all flows that are in the one-hop neighborhood of flow f
in the flow graph.
Proof The proof is based on induction in the connected graph
and calculations derived from SFQ [4]. 2

Remark III.1: The above proposition only gives the lower
bound on the service that each flow receives. However, the
upper-bound can be unlimited for the EMLM-FQ model.

Proposition III.3: (bounded flow unfairness of BFMLM-FQ)
In a connected network graph, for any two backlogged flows
f and g in the network, their received services Wf (t1; t2) and
Wg(t1; t2) during time interval [t1; t2] under the BFMLM-FQ
model satisfy:

j
Wf (t1; t2)

rf
�
Wg(t1; t2)

rg
j < � (5)

where rf is flow f ’s weight, and � is a topology-dependent con-
stant.
Proof Since the sliding window mechanism bounds the ser-
vice difference in each of the one-hop neighborhood in the flow
graph. Using arguments similar to Proposition III.1, the results
follow readily. 2

IV. A DISTRIBUTED IMPLEMENTATION WITHIN THE
CSMA/CA FRAMEWORK

In this section, we will present a practical implementation of
the proposed models within the framework of the CSMA/CA
MAC paradigm. Our implementation seeks to address the fol-
lowing practical issues:
� Exchange of the table information at a flow’s sender and its
receiver: In the models described in Section III, each node in
an ad hoc network maintains information for flows within one-
hop neighborhood in the flow contention graph. However, one-
hop neighborhood in a flow graph will translate to the two-hop
neighborhood in the real node graph in practice (recall in Fig-
ure 1, flow F1 one-hop neighborhood includes F2; F3; F5; F6).
Therefore, given a flow f , our proposed algorithms require us
to maintain flow information for flows that are within the trans-
mission range of either f ’s sender or its receiver. However, for
any given node, our goal is to maintain flow information (i.e.,
service tags) for flows only within its one-hop neighborhood in
the node graph. That is, no node needs to be aware of flow in-
formation at nodes that are more than one hop away in the node
graph. We will address this issue in our implementation.
� Propagation of each transmitting flow’s updated service tag:
In our model, the table of each node needs to record the most
recent service tag for each neighboring flow in the flow graph.
Whenever a flow transmits, either the senders or the receivers of
its neighboring flows should update the new service tag for this
flow. This operation is critical for the implementation of our
model and all related approaches [10]. One common approach
is to include the new service tag either in the control messages of
RTS and CTS, or packets DATA or ACK. However, spatial reuse
may prevent certain flows always hear collisions and never got
their relevant table entries updated (e.g., in Figure 1, when F 1

and F4 are transmitting simultaneously, F and C nodes will al-
ways hear collisions and will not be able to hear the new service
tags of F1 and F4).

� Hidden terminal problem in the shared-channel multihop
wireless network. This is a well-known problem in such net-
works [13].

A. Protocol Overview

A.1 Basic Message Exchange Sequence

In our protocol, each data transmission follows a basic se-
quence of RTS-CTS-DS-DATA-ACK handshake, and this mes-
sage exchange is preceded by a backoff of certain number of
minislot times. When a node has a packet to transmit, it waits for
an appropriate number of minislots before it initiates the RTS-
CTS handshake. Specifically, the node checks its local table
and sets a backoff timer for flow f to be the number of flows
with tags smaller than the tag of flow f . This way, the local
minimum-tag flow backs off for zero minislot and contends for
the channel immediately. If the backoff timer of f expires with-
out overhearing any ongoing transmission, it starts RTS (carry-
ing BR

f to be explained in the next section) to initiate the hand-
shake. If the node overhears some ongoing transmission, it can-
cels its backoff timer and defers until the ongoing transmission
completes; In the meantime, it updates its local table for the
tag of the on-going neighboring transmitting flow. When other
nodes hear a RTS, they defer for one CTS transmission time to
permit the sender to receive a CTS reply. When a receiver re-
ceives a RTS, it checks its local table. If BR

f is greater than or
equal to the backoff value for flow f in the receiver’s local ta-
ble, it responds with CTS. Otherwise, the receiver simply drops
RTS. Once a sender receives the CTS, it cancels all remaining
backoff timers (for other flows) and transmits DS (other moti-
vations for DS have been explained in [13]). When hosts hear
either a CTS or a DS message, they will defer until the DATA-
ACK transmission completes.

A.2 Maintaining table information at both the sender and the
receiver

Since the one-hop neighboring flow information of any flow
is distributed at either its sender or its receiver, this will specifi-
cally affect the backoff value setting for each flow. In the model
described in Section III, for flows that have smallest service tags
in their local tables, the backoff is zero; for each flow f in con-
current transmissions due to channel reuse, its backoff is set to
be the number of flows in the table whose service tags are less
than flow f . According to this policy, we should set the backoff
value for a flow, by taking into account both tables at the sender
and the receiver. That is, flow f ’s backoff Bf = BS

f + BR
f ,

where BS
f is the backoff according to its sender’s table, and BR

f

is the backoff according to the table at the receiver’s side. How-
ever, the sender’s table does not have the information at the re-
ceiver table. For simplicity of discussion, let us assume that
the sender’s table and the receiver’s table do not have identical
entries for the same flow. If a flow indeed appears in both ta-
bles, the receiver can simply delete this flow to avoid double
counting; this can be easily achieved at the flow join-in phase.
Then, in this scenario, a straightforward solution would be to
broadcast the receiver’s table in its one-hop neighborhood (of
the node graph). However, if the table is big and being updated
frequently, this will induce significant overhead, also this infor-
mation may have to be retransmitted when collision happens.
In essence, we have to reduce the communications between the
sender and the receiver, which are prone to collisions.

In our design, we provide a better solution: if node N is
the sender of flow g, sender N knows precisely the backoff

value BS
g for a flow at the sender’s table, but does not know

BR
g . We will let the sender estimate BR

g . To this end, when-
ever a flow g is transmitting through the RTS-CTS-DS-DATA-
ACK sequence, the ACK packet carries two parameters: Mg

and bg in order for the sender to estimate BR
g later on. Mg tells

us how much services (in bytes) toward other flows have to be
served before flow g transmits its packet in the receiver’s ta-
ble. Mg =

P
j2B(Tj � Tg)wg , where wg is flow g’s weight,

Tj is flow j’s current tag in the receiver table. The flow set B
denotes all flows that have smaller tag Tj than Tg of flow g. bg
denotes the backoff value for flow g at its receiver’s table. When
the sender N receives this information, it records Mg for flow
g, as well as the current time tg when the sender receives this
information. Then, at any given later time instant t, sender N
estimates BR

g � bg � (Mg � C � (t � tg))=Mg where C is the
channel capacity. Then the sender sets backoff for flow g as
Bf = BS

f + BR
f . When the backoff timer Bf expires, we initi-

ate RTS-CTS handshake and convey BR
f back to the receiver to

verify its estimation.

A.3 Propagating a flow’s updated service tag

In order to propagate a flow’s service tag to all its one-hop
neighbors in the node graph and reduce the chance of informa-
tion loss due to collisions during this service tag information
propagation, we attach the tag Tf for flow f in all four packets
RTS, CTS, DS and ACK. However, we do not use the updated
tag for flow f in RTS and CTS packets, since RTS and CTS do
not ensure a successful transmission. We still propagate this old
flow tag to help correct some stale information in the one-hop
neighborhood of the sender or the receiver. On the other hand,
once the handshake of RTS and CTS is successful, we attach the
updated flow tag in DS and ACK, to inform neighboring nodes
of the new updated service tag of the current transmitting flow
f . Whenever collision happens, we invoke the standard random
backoff algorithm.

Note that a flow f ’s sender always has correct information
(i.e., current service tag) on f and it is responsible to propagate
this accurate information to its neighbors. Hence, only accurate
information will be propagated in each local neighborhood of
the network graph.

B. Simple Overhead Analysis

We now perform a simple analysis on the message overhead
for data transmissions in our protocol. It is easy to show that the
efficiency of our protocol, defined as the ratio of data portion (in
bits) in each data transmission (including the control message
overhead) is given as:

� =
Tdata

Tdata + TRTS + TCTS + TDS + TACK

If we follow the 802.11 MAC specification, we choose a very
conservative parameter set: 24 bytes for RTS, 18 bytes for CTS
and DS, 20 bytes for ACK, 6 backoff slots (each slot is set to be
5 bytes), and the data packet is 512 bytes. Then the efficiency
will be always larger than 83% and the overhead is less than
17%, and this is acceptable in practice in order to achieve perfor-
mance bounds at the packet granularity; also this is comparable
to the overhead of IEEE 802.11 MAC. More importantly, since
we make explicit efforts in scheduling, the chance of collisions
is also reduced. In typical simulations for fair flow sharing, we
observe that the performance gain because of reduced collisions
by judicious scheduling may compensate this overhead, thus ef-
fectively maintaining or increasing the overall throughput.

N0 N1 N2 N3 N4 N5

F0 F1 F2 F3 F4
Fig. 6. Ex. 1: Node graph �

�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

F0

F1

F2

 F3

F4

Fig. 7. Ex. 1: Flow graph

0 1 2 3 4
0

2

4

6

8

10

12

14
x 10

4

Flow ID

Th
rou

gh
pu

ts

IEEE 802.11
TWO−TIER
ADP−COL
MLM−FQ
EMLM−FQ

Fig. 8. Ex. 1: Throughput comparison

V. SIMULATION EVALUATION

In this section, we use simulations to evaluate our pro-
posed algorithms. We compare our Maximize-local Minimum
Fair Queueing (MLM-FQ) algorithm, Enhanced Maximize-
local Minimum Fair Queueing (EMLM-FQ) algorithm, with
three other protocols proposed in the literature: the two-tier
fair scheduling (TWO-TIER) model [18], the adaptive-coloring-
based fair queueing (ADP-COL) algorithm [12], and FIFO with
the IEEE 802.11 MAC protocol. The simulator was imple-
mented within the ns-2 simulator. The radio model is based on
existing commercial wireless network with a radio transmission
range of 250 meters and channel capacity of 2Mbit/sec. We sim-
ulate flows with Constant Bit Rate application model in ns-2,
where the data packet size is set to be 512 bytes. Each simula-
tion is run for 1000 seconds, and the throughput is counted as
number of packets. We use identical flow weights in order to
compare with the IEEE802.11 standard.

A. Simulation Scenario 1

In this example, we simulate five flows in a linear topol-
ogy shown in Figure 6 (the flow graph is shown in Figure 7).
The throughputs using the five algorithms are given in Table
I. We observe that MLM-FQ indeed achieves inter-flow fair-
ness, and EMLM-FQ achieves much better spatial reuse in addi-
tion to ensuring minimum fair throughput (8% higher than FIFO
with IEEE 802.11 MAC). In this case, we also observe that the
TWO-TIER achieves highest system throughput due to its de-
sign efforts to maximize spatial reuse [18]. Besides, ADP-COL
achieves maximal inter-flow fairness due to its adaptive coloring
design [12], but this is at the cost of more design complexities
[12].

Flow 802.11 MAC TWO-TIER ADP-COL MLM-FQ EMLM-FQ
0 9649 131010 71805 56036 86291
1 59882 43714 71794 56034 53153
2 66735 43715 71791 56035 53656
3 84605 43716 71790 56036 55739
4 99124 131009 71810 56034 96268

Total 319995(100%) 393164(122%) 358990(112%) 280175 (80%) 345107(108%)

TABLE I
EX. 1: THROUGHPUT COMPARISONS

N1

N2

N4

N6

N5

N7

F1 N3

F3

F4

N0

F0

F2

N9

F6

N8

F5 F7

F8
N10

Fig. 9. Ex. 2: Node graph

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

F0

F1

F2

 F3 F4

F5

F8

F7

F6

Fig. 10. Ex. 2: Flow graph

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
5

Flow ID

Th
rou

gh
pu

ts

IEEE 802.11
TWO−TIER
ADP−COL
MLM−FQ
EMLM−FQ

Fig. 11. Ex. 2: Throughput comparison

B. Scenario 2

In this scenario, we simulate nine flows in two cliques as
shown in Figure 9 (the flow graph is shown in Figure 10). The
simulation results are given in Figure 11 and Table II. In this
case, since the flows form two cliques that are both heavily con-
gested thus making spatial reuse infrequent, we do not achieve
much spatial reuse in EMLM-FQ (only 2% increase compared
with MLM-FQ), but both algorithms ensure minimum fairness.
The Table also shows that IEEE 802.11 achieves best overall
throughput, but this is achieved at the cost of throughput suffer-
ings of flows F2, F3 and F6.

C. Scenario 3

In this example, we simulate ten flows in the node graph of
Figure 12 (the flow graph is Figure 13). The results are shown
in Figure 14 and Table III. In this case, we can see that MLM-
FQ still achieves inter-flow fairness, but at the cost of overall
throughput (49% of 802.11, which starves flows F 4, F7, F8 and
F9). EMLM-FQ improves the overall throughput to 85%. In
this case, TWO-TIER achieves best throughput, and ADP-COL
achieves maximal fair throughput, but these are achieved at the
cost of higher design and implementation complexity.

D. Scenario 4

We next simulate a large topology with 21 flows (shown in
Figures 15 and 16). The simulation results are given in Figure
17 and Table IV. From the results, we observe that MLM-FQ
still ensures absolute inter-flow fairness at the cost of overall
channel utilization. However, in this case, EMLM-FQ performs

Flow 802.11 MAC TWO-TIER ADP-COL MLM-FQ EMLM-FQ
0 199653 141575 47468 43857 53228
1 45424 28311 47448 43856 48263
2 16644 28312 47449 43857 48782
3 18673 28313 47467 43856 47552
4 31823 28314 47448 43855 40359
5 48686 169868 47449 43856 41053
6 14005 28312 47450 43855 41012
7 144219 28313 47448 43856 41409
8 55403 28314 47449 43855 42075

Total 574530(100%) 509632(88%) 427076(74%) 394703(69%) 403733(71%)

TABLE II
EX. 2: THROUGHPUT COMPARISONS

N14
N10

N4

N3

N7
N8

N12
N9

N13

F4

F9
F8

F7

F6

F5 N5

F0

N6

N11

N1 F1

F2

N2 N0F3

Fig. 12. Ex. 3: Node graph

F2

F1

F4F8

F7
F9

F3
F0

F5

F6

Fig. 13. Ex. 3: Flow graph

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

x 10
4

Flow ID

Th
rou

gh
pu

ts

IEEE 802.11
TWO−TIER
ADP−COL
MLM−FQ
EMLM−FQ

Fig. 14. Ex. 3: Throughput comparison

extremely well and achieves the highest system throughput with
minimum fair throughput assurances. In this case, we can see
that 802.11 starves multiple flows, TWO-TIER still gives very
high throughput, and ADP-COL achieves maximal fair through-
put for each flow.

VI. DISCUSSIONS AND RELATED WORK

In previous sections, we have described our proposed lo-
calized models and their practical implementations within the
CSMA/CA paradigm. We now comment on several design is-
sues and related works in the literature.

A. Further Comments

A.1 Node mobility

In an ad hoc network, each node can be mobile, thus changing
the network topology dynamically. In a highly mobile wireless
network, any model that requires global topology information or
global computation does not work. Note that both our proposed
localized models and their implementations require only one-

Flow 802.11 MAC TWO-TIER ADP-COL MLM-FQ EMLM-FQ
0 100020 119921 28306 19032 90994
1 9867 13501 28287 19039 28371
2 11984 13503 28289 19033 21884
3 99804 13502 28304 19037 16973
4 1 79906 28282 19037 14695
5 61129 13503 28281 19039 60540
6 86587 93319 28306 19035 33528
7 2625 13511 28287 19031 15864
8 6486 13513 28288 19033 28350
9 3881 13514 28286 19038 13871

Total 382384(100%) 387693(101%) 282916(74%) 190354(49%) 325070(85%)

TABLE III
EX. 3: THROUGHPUT COMPARISONS

N8 N9 N10 N11 N12 N13 N14 N16N15

F8F9F10

N17 N18 N19 N20 N21

N22 N23 N24 N25 N26 N27

F15

F16

N7

N1N0 N2 N3 N4 N5

F0F1F2F3

F4 F5

N6

F6F7

F11

F12

F13F14

N28 N29 N30 N31 N32

F17F18

F19F20

Fig. 15. Ex. 4: Node graph

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

F16

F14

F15

F0
F19

F1
F20

 F2 F13

F11
F5

F17

F3

F10

F18

F7

F12

F4

F9

F8

F6

Fig. 16. Ex. 4: Flow graph

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

x 10
5

Flow ID

Thr
oug

hpu
ts

IEEE 802.11
TWO−TIER
ADP−COL
MLM−FQ
EMLM−FQ

Fig. 17. Ex. 4: Throughput comparison

Flow 802.11 MAC TWO-TIER ADP-COL MLM-FQ EMLM-FQ
0 227785 172003 38163 35223 110946
1 3573 9286 38144 35224 55976
2 31006 9286 38163 35225 55045
3 186793 9287 38144 35227 40967
4 27874 9286 38143 35226 35543
5 27073 153710 38143 35228 39834
6 17023 9286 38144 35229 34790
7 2810 9286 38143 35231 35123
8 65098 181432 38163 35230 118945
9 938 9286 38143 35230 77309

10 120975 181431 38163 35233 167683
11 22330 9286 38163 35231 35850
12 18345 9287 38143 35232 91333
13 22942 145149 38163 35230 30559
14 84657 9286 38143 35231 30483
15 32583 163292 38163 35231 41662
16 32420 9286 38143 35230 70045
17 80647 181439 38163 35232 116547
18 176150 9287 38143 35232 93859
19 10933 9286 38144 35232 84380
20 41223 9286 38143 35231 78564

Total 1233178(100%) 1308463(106%) 801167(64%) 739818(60%) 1445443(117%)

TABLE IV
EX. 4: COMPARISONS OF FIVE PROTOCOLS

hop neighborhood flow information (i.e., each flow’s ID, and its
current service tag) and simple local computation, this feature
makes our design work well in the presence of node mobility.
However, if a node is mobile, it does take several packet trans-
mission times to discover its new neighborhood and its table in
the new location. Ongoing work seeks to evaluate this aspect
via simulations.

A.2 Scalability

Another feature of our proposed design is that it scales well in
a large-scale or dense ad hoc network. This is because in our de-
sign each node only communicates with its one-hop neighbors
in the node graph; the information maintained is also minimal,
only parameters such as current service tag and flow weight per
flow are needed. The computation workload (i.e., tag assign-
ment, sorting flows based on current virtual times, etc.) per-
formed at each node is also very light.

A.3 Other issues

Our design described in this paper mainly targets fixed packet
size, since this is realistic in typical wireless networks. But
our design also works for variable packet size scenarios since
the tagging update mechanism has counted the packet size and
our scheduling is based on the service tags of local contend-
ing flows. In our maximize-local-min algorithm, non-local-
minimum flows defer transmissions for flows with local min-
imum tags. In our enhanced maximize-local-min algorithm,
flows contend for spatial reuse; even though large packet size
may hurt the local minimum flows temporarily, the local mini-
mum flows always have highest priority for channel access (i.e.,
they have backoff zero) once the channel is idle.

A.4 Comparisons between fully distributed algorithms and our
localized coordination approach

A final comment is on the difference between our localized
coordination approach and a standard fully distributed algo-
rithm. We should clarify that our self-coordinating approach is a

class of fully distributed algorithms, but it emphasizes more on
structured design on fully distributed algorithm, while a com-
mon distributed algorithm design for fair queueing is typically
done in an ad hoc manner and seeks to approximate the cen-
tralized algorithm. In contrast, we will use the centralized algo-
rithm to extract the key global properties that we would like to
achieve through the local algorithms, then develop local models
that capture these global behaviors, and finally design imple-
mentation protocols to realize the proposed local models.

B. Related Work

Packet scheduling for both wired and packet cellular net-
works has been an intensive research area in the networking
field [1]–[9]. In multihop wireless networks, providing mini-
mum throughput and bounded delay access has been studied at
the MAC layer and some representative works on this topic in-
clude [14]–[17]. These works seek to design conflict-free link
scheduling schemes that attempt to maximize channel spatial
reuse and remain immune to topological changes in the pres-
ence of node mobility, and they are typically developed within
the TDMA-like MAC protocol. The focus of these MAC-layer
designs has been the mechanisms of channel access by assum-
ing that the packet scheduling algorithm has been worked out,
rather than the other way around.

Three more recent works address packet scheduling issues in
ad hoc wireless networks [10] [12] [18]. [10] studies the prob-
lem of fair queueing in ad hoc networks, and the focus has been
to define an appropriate centralized model (i.e., the GSR model
in the paper). It also provides a backoff-based distributed im-
plementation, but leaves out many critical details. Another in-
dependent work [12] also seeks to formulate the problem of ad
hoc fair queueing, and the authors seek to maximize channel
spatial reuse while ensuring fairness. Again the focus has been
to define an ideal centralized model, though it also provides a
tree-based distributed implementation. Finally, [18] presents a
centralized model and a distributed implementation protocol for
packet scheduling in ad hoc networks, but the focus there is how
to resolve the conflicts between fairness and maximal through-
put and arbitrate the tradeoff between these two.

In another recent work [11], the authors address the issue of
distributed fair queueing in a wireless LAN environment. The
proposed design only works for a completely connected graph.
Interested readers may wonder whether we can apply the same
algorithm in multihop wireless networks. It turns out this is not
feasible for an ad hoc network for multiple reasons. First, in
a fully connected graph, it may be true that we do not need to
maintain a virtual clock, but this is definitely not true for ad hoc
networks. Since the backoff approach of [11] has to subtract a
system virtual time from each flow’s current tag to compute the
backoff time for each packet transmission, the accurate acquisi-
tion of the system virtual time becomes critical. This problem
is trivial in a complete graph studied in [11]. It becomes un-
clear how to get the global system virtual time in a large-scale
multi-hop ad hoc network where multiple flows may be trans-
mitting simultaneously. Again, if we redefine the system virtual
time only to a local neighborhood, what fairness model that it
achieves becomes unclear. We illustrate this issue through the
example of Figure 4. In the same problem setting, according
to [11], the initial backoff values are set as B1 = T1 � V 1 =
1; B2 = 2; B3 = 3; B4 = 4: When F1 is transmitted, the up-
dated backoffs for F2; F3 are B2 = T2 � 1 = 1; B3 = 2: When
the backoff timer of F4 expires, the backoffs for F2 and F3 will
become B2 = 2 � 4 = �2; B3 = 3 � 4 = �1. This exam-

ple shows the difficulty in directly applying the design of [11]
in a multihop ad hoc network. Besides, large difference in flow
weights (e.g., 0.1 for flow F1, 0.001 for flow F2) will bring large
variance in the backoff values, and affect the performance. But
our design does not have this problem. Furthermore, our MLM-
FQ algorithm does not need synchronization, which is a clear
advantage over the backoff-based approach that needs accurate
synchronization. We do use the backoff mechanism in our de-
sign, but it is a secondary mechanism to improve spatial reuse.
Besides, our backoff mechanism does not need global synchro-
nization, and the local synchronization needed is provided by
the data transmission handshake.

VII. CONCLUSION

In this paper, we have proposed a suite of new localized and
fully distributed fair queueing model for ad hoc wireless net-
works. Our proposed models seek to devise scalable and effi-
cient solutions to ad hoc fair queueing problem, and they pro-
vide fairness and increase spatial reuse. Our models rely on
local information and local computations only, and multiple lo-
calized schedulers coordinate their interactions and collectively
achieve desired global properties such as fairness, scaling and
efficiency. We demonstrate the effectiveness of our proposed
design through both simulations and analysis. Ongoing work
seeks to improve the design of the distributed implementation,
to perform more extensive simulations, and to refine the analyt-
ical bounds of the proposed algorithms.

REFERENCES

[1] A. Demers, S. Keshav and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” ACM SIGCOMM’89, August 1989.

[2] A. Parekh, “A generalized processor sharing approach to flow control in
integrated services networks,” PhD Thesis, MIT Laboratory for Infor-
mation and Decision Systems, Technical Report LIDS-TR-2089, 1992.

[3] J.C.R. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted fair
queueing,” IEEE INFOCOM’96, 1996.

[4] P. Goyal, H.M. Vin and H. Chen, “Start-time fair queueing: A schedul-
ing algorithm for integrated service access,” ACM SIGCOMM’96. Au-
gust 1996.

[5] S. Lu, V. Bharghavan and R. Srikant, “Fair scheduling in wireless
packet networks,” IEEE/ACM Trans. Networking, August 1999.

[6] M. Srivastava, C. Fragouli, and V. Sivaraman, “Controlled Multime-
dia Wireless Link Sharing via Enhanced Class-Based Queueing with
Channel-State-Dependent Packet Scheduling,” IEEE INFOCOM’98,
March 1998.

[7] T.S. Ng, I. Stoica and H. Zhang, “Packet fair queueing algorithms
for wireless networks with location-dependent errors,” IEEE INFO-
COM’98, March 1998.

[8] P. Ramanathan and P. Agrawal, “Adapting packet fair queueing algo-
rithms to wireless networks,” ACM MOBICOM’98, October 1998.

[9] S. Lu, T. Nandagopal, and V. Bharghavan, “Fair scheduling in wireless
packet networks,” ACM MOBICOM’98, October 1998.

[10] N. H. Vaidya and P. Bahl, “Fair scheduling in broadcast environments,”
Microsoft Research Tech. Rep. MSR-TR-99-61.

[11] N. H. Vaidya, P. Bahl and S. Gupta, “Distributed fair scheduling in a
wireless LAN,” ACM MOBICOM’00, August 2000.

[12] H. Luo and S. Lu, “A topology-independent fair queueing model in ad
hoc wireless networks,” IEEE ICNP’00, Nov. 2000.

[13] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW:
A medium access protocol for wireless LANs,” ACM SIGCOMM’94,
1994.

[14] I. Chlamtac and A. Lerner, “Fair algorithms for maximal link activation
in multihop radio networks,” IEEE Trans. Communications, 35(7), July
1987.

[15] J. Ju and V.O.K. Li, “An optimal topology-transparent scheduling
method in multihop packet radio networks,” IEEE/ACM Trans. Net-
working, 6(3), June 1998.

[16] I. Chlamtac and A. Farago, “Making transmission schedules immune
to topology changes in multi-hop packet radio networks,” IEEE/ACM
Trans. Networking,, 2(1), February 1994.

[17] Z. Tang and J.J. Garacia-Luna-Aceves, “A protocol for topology-
dependent transmission scheduling in wireless networks,” WCNC’99,
September 1999.

[18] H. Luo, S. Lu and V. Bharghavan, “A new model for packet scheduling
in multihop wireless networks,” ACM MOBICOM’00, August 2000.

