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Abstract. The relative worst order ratio is a new measure for the quality of on-
line algorithms, which has been giving new separations and even new algorithms
for a variety of problems. Here, we apply the relative worst order ratio to the seat
reservation problem, the problem of assigning seats to passengers in a train. For
the unit price problem, where all tickets have the same cost, we show that First-Fit
and Best-Fit are better than Worst-Fit, even though they have not been separated
using the competitive ratio. The same relative worst order ratio result holds for the
proportional price problem, where the ticket price is proportional to the distance
travelled. In contrast, no deterministic algorithm has a competitive ratio, or even
a competitive ratio on accommodating sequences, which is bounded below by a
constant. It is also shown that the worst order ratio for seat reservation algorithms
is very closely related to the competitive ratio on accommodating sequences.

1 Introduction

The standard measure for the quality of on-line algorithms is the competitive ratio [14,
23, 17], which is, roughly speaking, the worst-case ratio, over all possible input se-
quences, of the on-line performance to the optimal off-line performance. In many cases,
the competitive ratio is quite successful in predicting the performance of algorithms.
However, in many others, it gives results that are either counter-intuitive or counter to
the experimental data. There is therefore a need to develop performance measures that
would supplement the competitive ratio.

The competitive ratio resembles the approximation ratio, which is not surprising
as on-line algorithms can be viewed as a special case of approximation algorithms.
However, while it seems natural to compare an approximation algorithm to an optimal
algorithm, which solves the same problem in unlimited time, it does not seem as natural
to compare an on-line algorithm to an off-line optimal algorithm, which actually solves
a different problem (an off-line version). Additionally, when there is need to compare
two on-line algorithms against each other, it seems more appropriate to compare them
directly, rather than involve an intermediate comparison to an optimal off-line algo-
rithm.

For this reason, a new performance measure for the quality of on-line algorithms
has been developed [6]. This measure, the relative worst order ratio, allows on-line al-
gorithms to be compared directly to each other. It combines the desirable properties of
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some previously considered performance measures, namely the Max/Max ratio [5] and
the random order ratio [18]. The Max/Max ratio allows direct comparison of two on-
line algorithms, without the intermediate comparison to OPT. The random order ratio,
on the other hand, is the worst-case ratio of the expected performance of an algorithm
on a random permutation of an input sequence, compared with an optimal solution. To
compare two algorithms using the relative worst order ratio, we consider a worst-case
sequence and take the ratio of how the two algorithms do on their respective worst or-
derings of that sequence. Though intended for direct comparison of on-line algorithms,
the relative worst order ratio may also be used to compare an on-line algorithm to the
optimal off-line algorithm, in which case it more closely parallels the competitive ratio.
We then refer to the ratio as simply the worst order ratio.

The relative worst order ratio has already been applied to some problems and has
led to more intuitively and/or experimentally correct results than the competitive ratio,
as well as to new algorithms. For paging, in contrast to the competitive ratio, it has
shown that Least-Recently-Used(LRU) is strictly better than Flush-When-Full(FWF)
and that look-ahead helps [8], both results being consistent with intuition and practice.
Additionally, although LRU is an optimal deterministic algorithm according to the com-
petitive ratio, a new algorithm RLRU has been discovered, which not only has a better
relative worst order ratio than LRU, but is experimentally better as well according to
initial testing [8]. Other problems where the relative worst order ratio has given more
correct results are bin packing [6, 7], scheduling [12], and bin coloring [20].

Given these encouraging results, this paper will use the relative worst order ratio to
analyze algorithms for the seat reservation problem. This problem is defined in [10] as
the problem of assigning passengers to seats on a train withn seats andk stations en-
route, in an on-line manner. We focus on deterministic algorithms, although randomized
algorithms for this problem have also been studied [10, 3]. Three algorithms are studied:
First-Fit, Best-Fit, and Worst-Fit. There are two variants of the seat reservation prob-
lem: the unit price problem and the proportional price problem. For both variants, the
competitive ratio isΘ( 1

k ) for all deterministic algorithms [10], and thus not bounded
below by a constant independent ofk (recall that for a maximization problem, a low
competitive ratio implies a bad algorithm). No pair of algorithms has been conclusively
separated using the competitive ratio.

Using the relative worst order ratio, we are able to differentiate all three algorithms,
for both the unit price and the proportional price problems. We show that for a category
of algorithms called Any-Fit, which includes both First-Fit and Best-Fit, First-Fit is at
least as good as any other algorithm. Moreover, First-Fit is strictly better than Best-Fit
with a relative worst order ratio of at least4

3 for the unit price problem and at leastk+2
6

for the proportional price problem. We also show that Worst-Fit is at least as bad as
any other deterministic algorithm, and is strictly worse than any Any-Fit algorithm by a
ratio of at least2− 1

k−1 for the unit price problem and exactlyk−1 for the proportional
price problem.

Additionally, we find that, for the seat reservation problem, an algorithm’s worst or-
der ratio is bounded from above by the competitive ratio on accommodating sequences1

1 The competitive ratio on accommodating sequences was first studied in [10], but called the
accommodating ratiothere.



(defined below) for the algorithm and bounded below by the competitive ratio on ac-
commodating sequences for some algorithm. This gives bounds for the worst order ratio
of 1

2 ≤ r ≤ 1
2 + 3n−3

2k+6n−(8+2c) , wherec ≡ k − 1 (mod 6), for the unit price problem.
This is a more useful estimate of how an algorithm performs than the competitive ratio,
which is not bounded below by a constant.

2 The Seat Reservation Problem

Theseat reservation problem[10] concerns a scenario where a train withn seats travels
on a route passing throughk ≥ 2 stations, including the first and the last. The seats are
numbered from 1 ton. The start station is station1 and the end station is stationk. A
customer may, any time prior to departure, request a ticket for travel between stations
s and f , where1 ≤ s < f ≤ k. At that time, the customer is assigned a single
seat number, which cannot be changed. It is the role of the algorithm (ticket agent) to
determine which seat number to assign. The customer may be refused a ticket only in
the case when there is no single seat which is empty for the duration of the request. An
algorithm which obeys this rule is calledfair, and all algorithms for this problem must
be fair.

The seat reservation problem is, by its very nature, an on-line problem. An algorithm
attempts to maximize income, i.e., the total price of the tickets sold, so the performance
of an algorithm depends on the ticket pricing policy. We consider two variants: In the
unit price problem, the price of all tickets is the same. In theproportional price problem,
the price of a ticket is directly proportional to the distance travelled. Some of the results
we prove hold for any pricing policy where all tickets have positive cost; we refer to
such results as holding “regardless of pricing policy.”

The seat reservation problem can be viewed as an interval graph coloring problem
[15], with the assignment of seat numbers corresponding to the assignment of colors.
An optimal on-line algorithm for the standard interval graph coloring problem, which
tries to minimize the number of colors used, instead of maximizing the number of inter-
vals given colors, is presented in [19]. The off-line seat reservation problem without the
fairness restriction is equivalent to the maximumk-colorable subgraph problem for in-
terval graphs, which is solvable in polynomial time [24]. Various other problems which
can be viewed as variants of the seat reservation problem are optical routing with a
limited number of wavelengths [1, 4, 13, 22], call control [2], and interval scheduling
[21].

Before continuing, we introduce some basic notation. We use the notationx =
[xs, xf) to denote an intervalx from stationxs to stationxf , where1 ≤ xs < xf ≤ k.
We say an intervalx is a subinterval of the intervaly if ys ≤ xs andxf ≤ yf . Since a
requestis just an interval, we will use the terms interchangibly, depending on what is
more natural at the time. Thelengthof an interval (request)x is simplyxs − xf . The
empty spacecontainingx is the maximum length of a request which could be placed on
that seat and which containsx as a subinterval. At any given time, we say that a seat is
activeif at least one request has been assigned to it, andinactiveotherwise.

We consider the following three algorithms:First-Fit is the algorithm which places a
request on the first seat which is unoccupied for the length of the journey.Best-Fitplaces



a request on a seat such that the empty space containing that request is minimized. We
note that to fully define the algorithm we must also specify a tie-breaker, that is, what
happens when there is more than one such seat. However, since we would like to keep
our results as widely applicable as possible, we will not assume any specific tie-breaker
in any of our proofs. Our results will thus hold for any choice of a tie-breaker for
Best-Fit. In some cases, bounds could be tightened slightly with knowledge of the tie-
breaker2. However, these improvements are minor, and do not change the meaning of
the results.Worst-Fit places a request on a seat such that the empty space containing
that request is maximized. Again, we assume that any tie-breaker may be chosen, and
our results hold for all such choices. In this case, however, knowledge of the tie-breaker
would not help tighten any of our bounds. Additionally, we consider the class ofAny-Fit
algorithms, inspired by a class of Bin Packing algorithms of the same name defined by
Johnson in [16]. An Any-Fit algorithm places a request on an inactive seat seat only if
it does not fit into any of the active seats.

3 The (Relative) Worst Order Ratio

In this section, we define the relative worst order ratio and the notion of two algorithms
being comparable (Definition 2) as in [6], though, for the sake of simplicity, only for
maximization problems, such as the seat reservation problem.

Many algorithms are designed with certain kinds of permutations of the input in
mind, making them very efficient for some permutations but very inefficient for others.
Thus, given a set of requests, if we were to compare the performance of two algo-
rithms directly to each other, we would get certain permutations where one algorithm
strongly outperforms the other while the opposite would hold for other permutations,
making the algorithms incomparable. Hence, we will consider sequences over the same
set of requests together, and we will compare the performance of two algorithms on
their respective worst-case permutations. To this end, we formally defineAW(I), the
performance of an on-line algorithmA on the “worst permutation” of the sequenceI of
requests, as follows:

Definition 1. Consider an on-line maximization problemP and letI be any request
sequence of lengthn. If σ is a permutation onn elements, thenσ(I) denotesI permuted
byσ. LetA be any algorithm forP . A(I) is the value of runningA on I, andAW(I) =
minσ A(σ(I)).

Definition 2. Let S1(c) andS2(c) be statements about algorithmsA andB defined in
the following way.

S1(c) : There exists a constantb such thatAW(I) ≤ c · BW(I) + b for all I.
S2(c) : There exists a constantb such thatAW(I) ≥ c · BW(I)− b for all I.
Therelative worst order ratioWRA,B of on-line algorithmA to algorithmB is defined

if S1(1) or S2(1) holds. In this case,A andB are said to becomparable. If S1(1) holds,
then WRA,B = sup {r | S2(r)}, and ifS2(1) holds, then WRA,B = inf {r | S1(r)} .

2 Specifically, the relative worst order ratio of First-Fit to Best-Fit can be slightly improved in
Theorem 3 and in Theorem 6.



The statementsS1(1) andS2(1) check that one algorithm is always at least as good
as the other on every sequence (on their respective worst permutations). When one
of them holds, the relative worst order ratio is a bound on how much better the one
algorithm can be. Note that ifS1(1) holds, the supremum involvesS2 rather thanS1,
and vice versa.

The constantb in the definitions ofS1(c) andS2(c) must be independent of the
sequenceI, and for the seat reservation problem, it must also be independent ofk and
n. A ratio of 1 means that the two algorithms perform identically with respect to this
quality measure; the further away from1, the greater the difference in performance. The
ratio is greater than one if the first algorithm is better and less than one if the second
algorithm is better. It is easily shown [6] that the relative worst order ratio is a transitive
measure, i.e., for any three algorithmsA, B, andC, WRA,B ≤ 1 and WRB,C ≤ 1 implies
WRA,C ≤ 1.

Although one of the goals in defining the relative worst order ratio was to avoid the
intermediate comparison of any on-line algorithm,A, to the optimal off-line algorithm,
OPT, it is still possible to compare on-line algorithms to OPT. In this case, the mea-
sure is called theworst order ratio[6], denoted WRA , WRA,OPT. This ratio can be
used to bound the relative worst order ratio between two algorithms and in some cases
gives tight results. Thus, although it is generally most interesting to compare on-line
algorithms directly to each other, the worst order ratio can also be useful in its own
right.

4 The Relation Between the Worst Order Ratio and the
Competitive Ratio on Accommodating Sequences

In this section, we show a connection between the worst order ratio and the competi-
tive ratio on accommodating sequences [10], which is relevant to the seat reservation
problem when the management has made a good guess as to how many seats are nec-
essary for the expected number of passengers. A sequence for which all requests can
be accepted withinn seats is called anaccommodating sequence. For a maximization
problem, an algorithmA is c-competitive on accommodating sequencesif, for every
accommodating sequenceI, A(I) ≥ c ·OPT(I)− b, whereb is a fixed constant for the
given problem, and, thus, independent ofI. Thecompetitive ratio on accommodating
sequencesfor algorithmA is defined as

sup{c | A is c-competitive on accommodating sequences}.

The major result of this section shows that the worst order ratio for any memory-
less, deterministic algorithm for the seat reservation problem, regardless of the pricing
policy, is equal to its competitive ratio on accommodating sequences. An algorithm is
memorylessif it never uses any information about anything but the current request and
the current configuration (which requests have been placed where) in making a decision
about the current request. A memoryless algorithm never uses information about the or-
der the requests came in or about any of the rejected requests. All algorithms considered
in this paper are memoryless.



In the proof showing this connection, it is shown that there is a permutation of a
particular subsequence which will force OPT to accept every item in that subsequence,
using the following lemma:

Lemma 1. Any algorithmA for the seat reservation problem will accept all requests
in any accommodating sequence,I, if the requests inI are in nondecreasing order by
left endpoint.

Proof. Consider any request,r = [rs, rf ), in the sequence,I. Since the sequence is ac-
commodating, there are at mostn requests containing the subinterval[rs, rs+1). Thus,
whenr occurs in the sequence, there is some seat whichA has left empty fromrs to
rs+1. Because of the the ordering of the requests, if the seat is empty fromrs to rs+1,
it is also empty to the right ofrs. Since any algorithm for the seat reservation problem
is fair, the request will be accepted. Thus, the entire sequence will be accepted.ut

Theorem 1. Let A be a deterministic algorithm for the seat reservation problem. IfA
is memoryless, thenA’s worst order ratio and its competitive ratio on accommodating
sequences are equal, regardless of the pricing policy. Otherwise,A’s worst order ratio
is no larger than its competitive ratio on accommodating sequences and at least the
competitive ratio on accommodating sequences of some algorithm.

Proof. First assume that WRA ≥ c. Then, there exists a constantb such thatAW (I) ≥
c·OPTW (I)−b for all input sequencesI. It follows from definitions thatA(I) ≥ AW (I)
and OPTW (I) = OPT(I) for all accommodating sequencesI. Hence, there exists a
constantb such thatA(I) ≥ c · OPT(I) − b for all accommodating sequencesI, soA
is c-competitive on accommodating sequences. Thus, the worst order ratio is at most as
large as the competitive ratio on accommodating sequences.

To prove the other direction, we consider an arbitrary input sequenceI and a worst-
case permutation ofI for A, IA. Let Iaccbe the subsequence ofIA containing all the
requests inIA which are accepted byA. Order the requests inIaccin nondecreasing or-
der by their left endpoints. Then, place this ordered sequence at the beginning of a new
sequence,IOPT, followed by the remaining requests remaining inI, giving a permuta-
tion of I. Notice that by the above lemma, OPT will be forced to accept all requests in
Iaccwhen givenIOPT. Let the subset of the requests it accepts fromIOPT beI ′. In OPT’s
worst permutation ofI, OPT accepts at most|I ′| requests. Clearly,I ′ is an accommo-
dating sequence. IfA is memoryless, then we can without loss of generality assume that
the items it rejects from a sequence are at the end of that sequence. Thus if, in a permu-
tation ofI ′, the items inIaccare placed in the same relative order as inIA, followed by
the remaining items fromI ′, A will accept only those inIacc. If A’s competitive ratio
on accommodating sequences isc, then for some constantb, AW (I ′) ≥ c · |I ′| − b,
soAW (I) = |Iacc| ≥ c · |I ′| − b, andAW (I) ≥ c · OPTW (I) − b. Since this holds
for any request sequenceI, WRA is at leastA’s competitive ratio on accommodating
sequences.

If A is not memoryless, it is not obvious that there is an permutation ofI ′ which
would causeA to accept onlyIacc. However, there is clearly some on-line algorithm,B
which would accept onlyIacc. Following the reasoning above, assumingB’s compet-
itive ratio on accommodating sequences isc, BW (I ′) ≥ c · |I ′| − b impliesAW (I) ≥



c · OPTW (I) − b. Thus, WRA is at leastB’s competitive ratio on accommodating se-
quences. ut

The theorem above, combined with results on the competitive ratio on accommo-
dating sequences [3], immediately gives that fork much larger thann, the worst order
ratio for any deterministic algorithm for the unit price problem is close to1

2 .

Corollary 1. The worst order ratio for any deterministic algorithm for the unit price
problem withn ≥ 3 seats is at least12 and most12 + 3n−3

2k+6n−(8+2c) , wherek ≥ 7 and
c ≡ k − 1 (mod 6).

This result is interesting in that it gives a much more optimistic prediction for the
unit price problem than the competitive ratio, which is not bounded below by a constant.
For the proportional price problem, the competitive ratio on accommodating sequences
has not been shown to be different from the competitive ratio [10]. Thus, if we similarly
try to extend the theorem above to the proportional price problem, we do not get any
results that are different from the competitive ratio.

The results above are also useful when considering the relative worst order ratio.
The next corollary, which follows from Theorem 1 and the results from [10], gives
bounds on the relative worst order ratios for the algorithms we consider.

Corollary 2. For any two comparable deterministic algorithmsA andB,

– for the unit price problem,12 ≤ WRA,B ≤ 2, and
– for the proportional price problem 1

k−1 ≤ WRA,B ≤ k − 1 .

5 The Unit Price Problem

In this section, we will investigate the relative worst order ratios of deterministic al-
gorithms for the unit price problem. Without loss of generality, we assume within the
proofs that the price of all tickets is one unit of profit. The algorithms we consider make
the same decisions regardless of the pricing policy used. Thus, we can make some
conclusions about their relative performance for the proportional price problem while
analyzing their relative performance for the unit price problem.

5.1 First-Fit Is at Least as Good as Any Any-Fit Algorithm

Our first result is based on the fact that given an input sequence and First-Fit’s arrange-
ment of it, an Any-Fit algorithm can be forced to make the exact same seat arrangements
by permuting the sequence in an appropriate way.

Theorem 2. For any Any-Fit algorithmA, WRFF,A ≥ 1, regardless of pricing policy.

Proof. We will consider an arbitrary input sequenceI and its worst-case permuta-
tion for First-Fit,IFF. We will show that there exists a permutation ofI, IA, such that
A(IA) = FF(IFF). This will imply that FFW(I) = FF(IFF) = A(IA) ≥ AW(I). Since
this will hold for all I, we will have proven the theorem.



Without loss of generality, we will assume that all requests which are rejected by
First-Fit appear last inIFF and that whenA must choose a new seat to activate, it will
choose the seat with the smallest number.

Let the height of a request inIFF be the seat it was assigned to by First-Fit, and∞ if
it was rejected by First-Fit. LetIA be a permutation ofI where all the requests appear
in order of non-decreasing height. We prove thatA(IA) = FF(IFF) by induction. The
induction hypothesis is that after processing all requests with height up to and including
i, A will make the same seat assignments as First-Fit. For the base casei = 0, no seats
have been assigned, so the inductive hypothesis holds trivially.

For the general case of1 ≤ i ≤ n, we consider whenA encounters the first request
with heighti. At this point,A has filled the firsti−1 seats exactly as First-Fit, and seats
i . . . n remain inactive. Since this request could not be fit into any of the firsti− 1 seats
by First-Fit, it cannot be fit into any of the firsti − 1 seats byA. It will therefore be
placed in the first available inactive seat, which is seati.

Now consider whenA encounters any other requestr with heighti. At this point,A
has filled the firsti− 1 seats with at least the same requests as First-Fit, and now it has
activated other seats as well. Seati is now active. Again,r cannot fit into any of the first
i−1 seats. Moreover, since the only possible requests to be placed on seati at this point
must have heighti and all requests with the same height must be non-overlapping,A
can fitr in seati. SinceA is an Any-Fit algorithm, it will necessarily assignr to seati.

For the case ofi = ∞, A is not able to accommodate these requests because if it
would then First-Fit would have accommodated them as well. Therefore,A will reject
these requests. ut

This theorem alone does not separate First-Fit from Best-Fit, but the following the-
orem gives us a family of input sequences for which First-Fit will out-perform Best-Fit.

Theorem 3. For the unit price problem withk ≥ 10, 4
3 ≤ WRFF,BF ≤ 2.

Proof. The upper bound follows directly from Corollary 2. Since Theorem 2 shows that
WRFF,BF ≥ 1, it is sufficient to find a family of sequencesIn with limn→∞ FFW(In) =
∞, where there exists a constantb such that for allIn, FFW(In) ≥ 4

3BFW(In)− b.
Consider the sequenceIn beginning with

⌊
n
2

⌋
request tuples[1, 2), [5, k − 4), [k −

1, k), followed by
⌊

n
2

⌋
request tuples[3, k − 2), [2, 3), [k − 2, k − 1). We then end

the sequence with
⌊

n
2

⌋
request tuples[1, 3), [k − 2, k). Clearly, even in the worst-case

ordering, First-Fit will accommodate all requests, so FFW(In) = 8 ·
⌊

n
2

⌋
. Best-Fit,

on the other hand, will accommodate at most two of the last
⌊

n
2

⌋
tuples given this

ordering (whenn is odd), so BFW(In) ≤ 6 ·
⌊

n
2

⌋
+ 2. The result follows: FFW(In) ≥

4
3BFW(In)− 8

3 . ut

It remains an open problem to close the gap between4
3 and2, though the relative

performance of First-Fit to Best-Fit is established.

5.2 Worst-Fit Is at Least as Bad as Any Deterministic Algorithm

Worst-Fit spreads out the requests, creating many short empty intervals, instead of
fewer, but longer, empty intervals, as with Best-Fit. The following theorem shows that
this strategy is not very successful,



Theorem 4. For any deterministic algorithmA, WRA,WF ≥ 1, regardless of pricing
policy.

Proof. We will consider an arbitrary input sequenceI and its worst-case permutation
for A, IA. We will show that there exists a permutation ofI, IWF, for which Worst-Fit
will reject at least all the elements thatA rejected. This will implyAW(I) = A(IA) ≥
WF(IWF) ≥ WFW(I). Since this will hold for allI, we will have proven the theorem.

We constructIWF by ordering all the requestsA accepted in nondecreasing order of
their start station, followed by all the rejected requests in arbitrary order. Letr be any
request rejected byA. Consider the set of requestsS = {s1, s2, . . . , sn}, which are the
first n elements inIWF which overlapr. Such a set must exist sincer was rejected by
A. We claim that no two requests fromS will be placed in the same seat by Worst-Fit.
If the claim holds, then it will imply thatr is rejected by Worst-Fit.

We prove the claim by contradiction. Suppose there exist two requests,x, y ∈ S
such that Worst-Fit places them in the same seat. Without loss of generality, we assume
Worst-Fit processesx beforey. Since requests appear in nondecreasing order of their
start station inIWF, we have thaty lies to the right ofx. Now consider the point in time
when Worst-Fit processesy. SinceS contains the firstn requests inIWF overlapping
r, and Worst-Fit has not processed all of them yet, there must be a seat for which the
intervalr is still empty. Furthermore, since Worst-Fit hasn’t yet processed any requests
that lie completely to the right ofr, there exists a free interval on this seat of length
s ≥ k − rs into which Worst-Fit could placey. On the other hand, the free interval on
the seat ofx has lengths′ ≤ k − xf . Sinces > s′, Worst-Fit would not placey on the
same seat asx, and therefore we have reached a contradiction. ut

Additionally, we can prove an asymptotically tight bound for the relative worst order
ratio of Worst-Fit to both First-Fit and Best-Fit, which is as bad as Worst-Fit can be with
respect to any algorithm. The following proof uses a family of sequences, first used in
[9], which can be intuitively seen to cause Worst-Fit to perform very poorly. This idea
is formalized with respect to the relative worst order ratio in the following theorem.

Theorem 5. For any Any-Fit algorithmA for the unit price problem

2− 1
k − 1

≤ WRA,WF ≤ 2.

Proof. The upper bound follows directly from Corollary 2. Since Theorem 4 implies
that WRA,WF ≥ 1, to prove the lower bound, it is sufficient to find a family of sequences
In with limn→∞AW(In) = ∞, where there exists a constantb such that for allIn,
AW(In) ≥ (2− 1

k−1 )WFW(In)− b.

We constructIn as follows. We begin the request sequence with
⌊

n
k−1

⌋
requests for

each of the intervals[1, 2), [2, 3), . . . , [k − 1, k). In the case whenn is not divisible by
k − 1, we also give one additional request for each of the intervals[1, 2), . . . , [(n mod
k − 1), (n mod k − 1) + 1). If n is divisible byk − 1, then these requests are omitted.

Then we finish the sequence withn−
⌈

n
k−1

⌉
requests for the interval[1, k). Regardless

of the ordering,A will accommodate all requests, so thatAW(In) = 2n −
⌈

n
k−1

⌉
. For



Worst-Fit, the given ordering is the worst case ordering, and it will fill all the available
seats with the firstn requests, while rejecting all the remaining requests. Therefore,
WFW(In) = n. This gives us the needed ratio:AW(In) ≥ (2− 1

k−1 )WFW(In)−1. ut

Corollary 3. 2− 1
k−1 ≤ WRFF,WF ≤ 2 and2− 1

k−1 ≤ WRBF,WF ≤ 2.

Thus, we obtain a clear separation between Worst-Fit and First-Fit/Best-Fit, and the
bounds on the ratio are asymptotically tight.

6 The Proportional Price Problem

For the proportional price problem, the ticket price is proportional to the distance trav-
elled. Without loss of generality, we will assume in the proofs that the price of a ticket
from stationi to stationj is j − i. It turns out that many of the results for the unit price
problem can be transfered to the proportional price problem. Specifically, we still have
the result that First-Fit is at least as good as any Any-Fit algorithm, and Worst-Fit is at
least as bad as any deterministic algorithm. One difference is that the value of the rel-
ative worst order ratio of First-Fit to Best-Fit is different, as we show in the following
theorem.

Theorem 6. For the proportional price problem withk ≥ 6, k+2
6 ≤ WRFF,BF ≤ k− 1.

Proof. The upper bound follows directly from Corollary 2. Since Theorem 2 shows that
WRFF,BF ≥ 1, it is sufficient to find a family of sequencesIn with limn→∞ FFW(In) =
∞, such that for allIn, FFW(In) ≥ k+2

6 BFW(In).
We define the family of sequencesIn only for evenn. Consider this sequence begin-

ning with n
2 request tuples[1, 2), [k− 1, k), followed by n

2 request tuples[k− 3, k) and
[2, 3). Finally, the sequence concludes withn

2 requests tuples[1, k−3). First-Fit will be
able to place all the requests regardless of their ordering, so FFW(In) = (k + 2) · (n

2 ).
On the other hand, Best-Fit will not accommodate any of the lastn

2 requests when given
the ordering above, so BFW(In) = 6 · (n

2 ). The needed ratio follows. ut

Unlike for the unit price problem, the relative worst order ratio of First-Fit to Best-
Fit is not bounded by a constant independent ofk. Moreover, the gap between the lower
bound and the upper bound increases ask goes to infinity, meaning that the bounds are
not asymptotically tight. It would be interesting to see if they can be tightened to be so.

The second difference between the proportional and unit price problem is the rela-
tive worst order ratio of Worst-Fit to any Any-Fit algorithm. Specifically, we have the
following theorem.

Theorem 7. For any Any-Fit algorithmA for the proportional price problem,

WRA,WF = k − 1.

Proof. The upper bound follows directly from Corollary 2. Since Theorem 4 shows that
WRA,WF ≥ 1, it is sufficient to find a family of sequencesIn with limn→∞AW(In) =
∞, such that for allIn, AW(In) ≥ (k − 1)WFW(In).



We will use the same sequence as was used in the proof of Theorem 5, except that
we will define it only forn divisible by k − 1. The algorithms will still accept and
reject the same requests, but the profit must be calculated differently. WFW(In) = n
still holds, but nowAW(In) = n · (k − 1). The resulting ratio for the lower bound
follows. ut

Thus, the ratio of Worst-Fit to any Any-Fit algorithm is exact, and is as bad as can
be. We note that in the above proof we consider the same ordering of the sequence for
both Worst-Fit andA, andA behaves exactly as OPT. This means we can also use the
same sequence to prove that the competitive ratio for Worst-Fit is the worst possible
among deterministic algorithms.

7 Concluding Remarks and Open Problems

The relative worst order ratio has already been applied to some problems, and has led to
intuitively and/or experimentally correct results which could not be obtained with the
competitive ratio [6, 8, 12, 20]. For the seat reservation problem, applying the relative
worst order ratio has proven very helpful in differentiating between various determin-
istic algorithms that could not be differentiated with the competitive ratio. Moreover,
previous work studying the seat reservation problem with respect to the competitive ra-
tio and the competitive ratio on accommodating sequences has essentially ignored the
proportional price problem, since all the results have been so negative. In contrast, the
relative worst order ratio allows us to easily compare algorithms for the proportional
price problem.

It remains interesting to see if the assumption thatA is memoryless is necessary
in Theorem 1. As is, Theorem 1 is interesting in that it gives a relationship between
the relative worst order ratio and the competitive ratio on accommodating sequences.
The direction showing that the worst order ratio for an algorithmA is no larger than
its competitive ratio on accommodating sequences clearly applies to any maximiza-
tion problem (and the opposite inequality for any minimization problem). However, the
other direction does not hold for all problems. For dual bin packing, a problem where
most results have resembled those for the unit price seat reservation problem, WRA = 0
for any fair, deterministic algorithmA [6], although the competitive ratio on accommo-
dating sequences is always at least1

2 [11].
With respect to the algorithms described in this paper, the most interesting open

problem is to close the gap between4
3 and2 for the ratio of Fist-Fit to Best-Fit. Ul-

timately, the goal is to find an algorithm that is better than the existing ones, as has
been done for the paging problem [8]. In this sense, the most interesting open problem
remains to find an algorithm that does better than First-Fit, or show that one does not
exist.
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