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Abstract. The seat reservation problem is the problem of assigning passengers to seats on a train with

n seats and k stations enroute in an online manner. The performance of algorithms for this problem is

studied using the relative worst order ratio, a fairly new measure for the quality of online algorithms,

which allows for direct comparisons between algorithms. This study has yielded new separations

between algorithms. For example, for both variants of the problem considered, using the relative

worst order ratio, First-Fit and Best-Fit are shown to be better than Worst-Fit.
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1. Introduction

The standard measure for the quality of online algorithms is the competitive ratio

[Graham 1966; Sleator and Tarjan 1985; Karlin et al. 1988], which is, roughly

speaking, the worst-case ratio over all possible input sequences, of the online
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48:2 J. BOYAR AND P. MEDVEDEV

performance to the optimal offline performance. In many cases, the competitive

ratio is quite successful in predicting the performance of algorithms. However, in

many others, it gives results that are either counterintuitive or counter to the ex-

perimental data. There is therefore a need to develop performance measures that

supplement the competitive ratio.

The competitive ratio resembles the approximation ratio, which is not surprising

as efficient online algorithms can be viewed as a special case of approximation

algorithms. However, while it seems natural to compare an approximation algorithm

to an optimal algorithm, which solves the same problem in unlimited time, it seems

less natural to compare an online algorithm to an offline optimal algorithm, which

actually solves a variant of the original problem (the offline version). Additionally,

when there is need to compare two online algorithms against each other, it seems

more appropriate to compare them directly rather than involve an intermediate

comparison to an optimal offline algorithm.

For this reason, a new performance measure for the quality of online algorithms

has been developed [Boyar and Favrholdt 2003]. This measure, the relative worst

order ratio, allows online algorithms to be compared directly to each other. It com-

bines the desirable properties of some previously considered performance measures,

namely the Max/Max ratio [Ben-David and Borodin 1994] and the random order

ratio [Kenyon 1996]. The Max/Max ratio allows direct comparison of two online

algorithms without the intermediate comparison to OPT. The random order ratio,

on the other hand, is the worst-case ratio of the expected performance of analgo-

rithm on a random permutation of an input sequence, compared with an optimal

solution. To compare two algorithms using the relative worst order ratio, we con-

sider a worst-case sequence and take the ratio of how the two algorithms do on their

respective worst orderings of that sequence. Though intended for direct comparison

of online algorithms, the relative worst order ratio may also be used to compare

an online algorithm to the optimal offline algorithm, in which case it more closely

parallels the competitive ratio. We then refer to the ratio as simply the worst order

ratio.

The relative worst order ratio has already been applied to some problems and has

led to more intuitively and/or experimentally correct results than the competitive

ratio1 as well as to new algorithms. For paging, in contrast to the competitive ratio, it

has shown that Least-Recently-Used (LRU) is strictly better than Flush-When-Full

(FWF) and that look-ahead helps [Boyar et al. 2005]; both results are consistent

with intuition and practice. Additionally, although LRU is an optimal deterministic

algorithm according to the competitive ratio, a new algorithm RLRU has been

discovered, which not only has a better relative worst order ratio than LRU but

is experimentally better as well, according to initial testing [Boyar et al. 2005].

Other problems where the relative worst order ratio has given more intuitively

correct results are bin packing [Boyar and Favrholdt 2003], scheduling [Epstein

et al. 2006], and bin coloring [Kohrt 2004].

Given these encouraging results, this article uses the relative worst order ratio

to analyze algorithms for the seat reservation problem. This problem is defined

1There have been numerous modifications proposed to the competitive ratio for the analysis of online

algorithms, some of which are also able to improve on the competitive ratio for various problems,

especially paging. For a survey, see Dorrigiv and López-Ortiz [2005].
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TABLE I. BOUNDS FOR THE COMPETITIVE RATIO

Unit Price Proportional Price

Any det. alg. 2

k ≤ r ≤ 8

k+5

1

k−1
≤ r ≤ 4+2

√
13

3+2
√

13+k

Worst-Fit 2

k ≤ r ≤ 4

k+1
r = 1

k−1

First-Fit/Best-Fit 2

k ≤ r ≤ 2− 1
k−1

k−1

1

k−1
≤ r ≤ 4

k+2

in Boyar and Larsen [1999] as the problem of assigning passengers to seats on a

train with n seats and k stations enroute in an online manner. Five algorithms are

studied: First-Fit, Best-Fit, Worst-Fit, KTA, and Random. There are two variants of

the seat reservation problem, namely, the unit price problem and the proportional

price problem.

The competitive ratio has been applied to both variants in Boyar and Larsen

[1999], Bach et al. [2003], and Boyar et al. [2003], particularly for First-Fit, Best-

Fit, and Worst-Fit. The known results are summarized in Table I2. For both variants,

the competitive ratio is �( 1
k ) for all deterministic algorithms [Boyar and Larsen

1999], and thus not bounded below by a constant independent of k (recall that for a

maximization problem, a low competitive ratio implies a bad algorithm). The results

in Table I concerning the proportional price problem also hold for the competitive

ratio on accommodating sequences [Boyar and Larsen 1999], which is defined in

Section 5. For the unit price problem, the lower bound from Boyar and Larsen

[1999] on the competitive ratio on accommodating sequences for any deterministic

algorithm is 1
2
, and the upper bound from Bach et al. [2003] is 1

2
+ 3n−3

2k+6n−(8+2c)
,

where c = (k − 1) mod 6.

No pair of algorithms for the seat reservation problem has been conclusively

separated using the competitive ratio (or the competitive ratio on accommodating

sequences). Combined with the pessimistic upper bounds on the competitive ratios,

these inconclusive results make the seat reservation problem an ideal candidate to

study with the relative worst order ratio.

2. Our Results

Using the relative worst order ratio, we are able to differentiate First-Fit, Best-Fit,

and Worst-Fit for both the unit price and the proportional price problems. We show

that for a category of algorithms called Any-Fit, which includes both First-Fit and

Best-Fit, First-Fit is at least as good as any other algorithm. Moreover, First-Fit

is strictly better than Best-Fit with a relative worst order ratio that is at least k+2
6

for the proportional price problem and asymptotically at least 5
3

for the unit price

problem. We also show that Worst-Fit is at least as bad as any other algorithm and

is strictly worse than any Any-Fit algorithm by a ratio of at least 2− 1
k−1

for the unit

price problem and exactly k − 1 for the proportional price problem. With regard

to KTA, we show that it is incomparable to First-Fit and Best-Fit and is strictly

2All bounds are directly stated in Boyar and Larsen [1999] with the following exceptions. The upper

bound on Worst-Fit for unit price can be concluded from the proof of Theorem 8 in Boyar and Larsen

[1999]. The upper bound on Worst-Fit for proportional price follows from the worst-case sequence

used in Theorem 8 in Boyar et al. [2003].
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better than Worst-Fit. For Random, we show that it is incomparable to any Any-Fit

algorithm.

Additionally, we find that, for the seat reservation problem, a deterministic al-

gorithm’s worst order ratio is bounded from above by the competitive ratio on

accommodating sequences3 (defined in Section 5) for the algorithm and bounded

below by the competitive ratio on accommodating sequences for some (possibly

a different) algorithm. Thus, a general lower bound on the competitive ratio on

accommodating sequences gives a general lower bound for the worst order ratio,

so we get bounds for the worst order ratio of 1
2

≤ r ≤ 1
2

+ 3n−3
2k+6n−(8+2c)

, where

c = (k − 1) mod 6, for the unit price problem. This is a more useful estimate of

how an algorithm performs than the competitive ratio which is not bounded below

by a constant.

3. The Seat Reservation Problem: Definitions and Algorithms

The seat reservation problem was originally studied in Boyar and Larsen [1999].

We consider a scenario where a train with n seats travels on a route passing through

k ≥ 2 stations, including the first and the last. The seats are numbered from 1 to

n. The start station is station 1 and the end station is station k. A customer may,

anytime prior to departure, request a ticket for travel between stations s and f , where

1 ≤ s < f ≤ k. At that time, the customer is assigned a single seat number which

cannot be changed. It is the role of the algorithm (ticket agent) to determine which

seat number to assign. The customer may be refused a ticket only in the case when

there is no single seat which is empty for the duration of the request. An algorithm

which obeys this rule is called fair, and all algorithms for this problem must be

fair.

The seat reservation problem is by its very nature an online problem. The algo-

rithm attempts to maximize income, that is, the total price of the tickets sold. The

performance of an algorithm will thus clearly depend on the ticket-pricing policy.

There are two main variants of this problem. In the unit price problem, the price

of all tickets is the same. In the proportional price problem, the price of a ticket

is directly proportional to the distance traveled. Some of the results we prove hold

for any pricing policy where all tickets have positive cost; we refer to such results

as holding regardless of pricing policy.

Before continuing, we introduce some basic notation. We use the notation x =
[x s, x f) to denote an interval x from station xs to station xf, where 1 ≤ xs < xf ≤ k.

We use the notation xk to denote k copies of x , where k is a nonnegative integer.

We say an interval x is a subinterval of the interval y if ys ≤ xs and xf ≤ yf. Since

a request is just an interval, we use the terms interchangeably, depending on what

is more natural at the time. The length of an interval (request) x is simply xf − xs.

Given a seat, the empty space containing x is the maximum length of a request

which could be placed on that seat and which contains x as a subinterval. At any

given time, we say that a seat is active if at least one request has been assigned to

it, and inactive otherwise. We define the density of an interval of length one as the

3 The competitive ratio on accommodating sequences was first studied in Boyar and Larsen [1999]

but was called the accommodating ratio there.
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number of requests that overlap that interval. The density of a larger interval is the

maximum density of any of its length one subintervals. In the case the interval is

[1, k), we say the density of the input sequence.

The following three algorithms which we consider are all inspired by bin packing

algorithms of the same name.

—First-Fit. This algorithm places a request on the first seat which is unoccupied

for the length of the journey.

—Best-Fit. This algorithm places a request on a seat such that the empty space

containing that request is minimized. We note that to fully define the algorithm

we must also specify a tiebreaker, that is, what happens when there is more

than one such seat. However, since we would like to keep our results as widely

applicable as possible, we do not assume any specific tiebreaker in any of our

proofs. Thus, our results hold for any choice of a tiebreaker for Best-Fit. In some

cases, bounds could be tightened with knowledge of the tiebreaker4. However,

these improvements are minor, and do not change the meaning of the results.

—Worst-Fit. This algorithm places a request on a seat such that the empty space

containing that request is maximized. Again, we assume that any tiebreaker

may be chosen, and our results hold for all such choices. In this case, however,

knowledge of the tiebreaker would not help tighten any of our bounds.

Additionally, we consider the following class of algorithms, also inspired by a class

of bin packing algorithms of the same name defined by Johnson [1974].

—Any-Fit. An algorithm which belongs to this class places a request on an inactive

seat only if it does not fit into any of the active seats. This class includes both

First-Fit and Best-Fit.

Finally, we consider a random algorithm, first studied in Bach et al. [2003].

—Random. Given a request, this algorithm uniformly chooses a random seat from

all the seats that are free for the duration of the request.

We also study another algorithm, KTA, but its definition is left for Section 7.

4. The (Relative) Worst Order Ratio

In this section, we define the relative worst order ratio and the notion of two al-

gorithms being comparable (Definition 4.2) as in Boyar and Favrholdt [2003] and

Boyar et al. [2005], though for the sake of simplicity only for maximization prob-

lems such as the seat reservation problem.

Many algorithms are designed with certain kinds of input in mind, giving very

good results for some request sequences but very poor results for others. Thus, if

we were to compare the performance of two algorithms directly to each other, we

would get certain request sequences where one algorithm strongly outperforms the

other while the opposite would hold for other sequences, making the algorithms

incomparable. Hence, we consider sequences over the same multiset of requests

4Specifically, the relative worst order ratio of First-Fit to Best-Fit can be slightly improved in Theo-

rem 6.2 and in Theorem 6.6.
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together, and we compare the performance of two algorithms on their respective

worst-case permutations. To this end, we formally define AW(I ), the performance

of an online algorithm A on the worst permutation of the sequence I of requests,

as follows.

Definition 4.1. Consider an online maximization problem P and let I be any

request sequence of length n. If σ is a permutation on n elements, then σ (I ) denotes

I permuted by σ . Let A be any algorithm for P . If A is deterministic, then A(I ) is

the value of running A on I , and

AW(I ) = min
σ

A(σ (I )).

If A is randomized, then E[A(I )] is the expected value of running A on I , and

AW(I ) = min
σ

E[A(σ (I ))].

The following definition differs slightly from the definition given in the earliest

papers on the relative worst order ratio but is identical to that in the journal version

of Boyar et al. [2005].

Definition 4.2. For any pair of algorithms A and B, we define

cl(A, B) = sup {c | ∃b : ∀I : AW(I ) ≥ c BW(I ) − b} and

cu(A, B) = inf {c | ∃b : ∀I : AW(I ) ≤ c BW(I ) + b} .

If cl(A, B) ≥ 1 or cu(A, B) ≤ 1, the algorithms are said to be comparable and

the relative worst order ratio WRA,B of algorithm A to algorithm B is defined.

Otherwise, WRA,B is undefined.

If cl(A, B) ≥ 1, then WRA,B = cu(A, B), and

if cu(A, B) ≤ 1, then WRA,B = cl(A, B) .

If WRA,B > 1, algorithms A and B are said to be comparable in A’s favor. Similarly,

if WRA,B < 1, the algorithms are said to be comparable in B’s favor.

The comparison of cl(A, B) and cu(A, B) to 1 checks that one algorithm is always

at least as good as the other on every sequence (on their respective worst permu-

tations). When one of the two conditions holds, the relative worst order ratio is a

bound on how much better the one algorithm can be.

The constant b in the definitions of cl(A, B) and cu(A, B) must be independent of

the sequence I , and, for the seat reservation problem, it must also be independent

of k and n. A ratio of 1 means that the two algorithms perform identically with

respect to this quality measure; the further away from 1, the greater the difference

in performance. The ratio is greater than one if the first algorithm is better and less

than one if the second algorithm is better. It is easily shown [Boyar and Favrholdt

2003] (the journal version of Boyar et al. [2005] for this exact definition) that the

relative worst order ratio is a transitive measure, that is, for any three algorithms A,

B, and C, WRA,B ≥ 1 and WRB,C ≥ 1 implies WRA,C ≥ 1. It also follows from

the definition that if A and B are comparable, then WRA,B = 1
WRB,A

. In this article,

we use the convention that the ratios are greater than one, so we usually write the

better algorithm first.
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Although one of the goals in defining the relative worst order ratio was to avoid the

intermediate comparison of an online algorithm A to the optimal offline algorithm,

OPT, it is still possible to use it to compare online algorithms to OPT. In this case,

the measure is called the worst order ratio [Boyar and Favrholdt 2003], denoted
WRA � WRA,OPT (note that in this special case, we write the better algorithm

second as we do with minimization problems, and we will get ratios less than 1).

This ratio can be used to bound the relative worst order ratio between two algorithms

and in some cases gives tight results. Thus, although it is generally most interesting

to compare online algorithms directly to each other, the worst order ratio can also

be useful in its own right.

5. The Relation Between the Worst Order Ratio and the Competitive Ratio
on Accommodating Sequences

In this section, we show a connection between the worst order ratio and the compet-

itive ratio on accommodating sequences [Boyar et al. 2001], which is relevant to the

seat reservation problem when the management has made a good guess as to how

many seats are necessary for the expected number of passengers. A sequence for

which all requests can be accepted within n seats is called an accommodating se-
quence. For a maximization problem, an algorithm A is c-competitive on accommo-
dating sequences if, for every accommodating sequence I , A(I ) ≥ c · OPT(I ) − b,

where b is a fixed constant for the given problem, and, thus, independent of I , k, and

n. The competitive ratio on accommodating sequences for algorithm A is defined

as

sup{c | A is c-competitive on accommodating sequences}.
In this section, we compare the worst order ratio and the competitive ratio on

accommodating sequences for the seat reservation problem. Note that even though

OPT is offline, it must still be fair since this is part of the problem definition.

The major result of this section shows that the worst order ratio for any mem-

oryless deterministic algorithm for the seat reservation problem, regardless of the

pricing policy, is equal to its competitive ratio on accommodating sequences. An

algorithm is memoryless if it never uses any information about anything but the

current request and the current configuration (which requests have been placed

where) in making a decision about the current request. A memoryless algorithm

never uses information about the order the requests came in or about any of the

rejected requests. All algorithms considered in this article are memoryless.

In the proof showing this connection, it is shown that there is a permutation of a

particular subsequence which forces OPT to accept every item in that subsequence,

using the following lemma.

LEMMA 5.1. Any algorithm A for the seat reservation problem will accept all
requests in any accommodating sequence I if the requests in I are in nondecreasing
order by left endpoint.

PROOF. Consider any request, r = [rs, r f ), in the sequence I . Since the se-

quence is accommodating, there are at most n requests containing the subinterval

[rs, rs + 1). Thus, when r occurs in the sequence, there is some seat which A has

left empty from rs to rs + 1. Because of the ordering of the requests, if the seat is
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48:8 J. BOYAR AND P. MEDVEDEV

empty from rs to rs + 1, it is also empty to the right of rs . Since any algorithm for

the seat reservation problem is fair, the request will be accepted. Thus, the entire

sequence will be accepted.

THEOREM 5.2. Let A be a deterministic algorithm for the seat reservation
problem. If A is memoryless, then A’s worst order ratio and its competitive ratio on
accommodating sequences are equal, regardless of the pricing policy. Otherwise,
A’s worst order ratio is no larger than its competitive ratio on accommodating
sequences and at least the competitive ratio on accommodating sequences of some
algorithm.

PROOF. First assume that WRA ≥ c. Then for any ε > 0, there exists a constant

b such that AW (I ) ≥ (1−ε)c·OPTW (I )−b for all input sequences I . It follows from

definitions that A(I ) ≥ AW (I ) and OPTW (I ) = OPT(I ) for all accommodating

sequences I . Hence, there exists a constant b such that A(I ) ≥ (1 − ε)c · OPT(I ) −
b for all accommodating sequences I , so A is c-competitive on accommodating

sequences. Thus, the worst order ratio is at most as large as the competitive ratio

on accommodating sequences.

To prove the other direction, we consider an arbitrary input sequence I and a

worst-case permutation of I for A, IA. Let Iacc be the subsequence of IA containing

all the requests in IA which are accepted by A. Order the requests in Iacc in non-

decreasing order by their left endpoints. Then, place this ordered sequence at the

beginning of a new sequence IOPT, followed by the remaining requests in I , giving

a permutation of I . Notice that by Lemma, 5.1, OPT will be forced to accept all

requests in Iacc when given IOPT. Let the subset of the requests it accepts from IOPT

be I ′. Let p(I ′) denote the profit obtained by accepting the requests in I ′. In OPT’s

worst permutation of I , OPT earns at most p(I ′) profit. Clearly, I ′ is an accommo-

dating sequence. If A is memoryless, then we can without loss of generality assume

that the items it rejects from a sequence are at the end of that sequence. Thus if in

a permutation of I ′, the items in Iacc are placed in the same relative order as in IA,

followed by the remaining items from I ′, A will accept only those in Iacc. If A’s

competitive ratio on accommodating sequences is c, then for any constant ε > 0,

there exists a constant b such that

AW (I ′) ≥ (1 − ε)c · p(I ′) − b

⇒ p(Iacc) ≥ (1 − ε)c · p(I ′) − b

⇒ AW (I ) ≥ (1 − ε)c · p(I ′) − b
⇒ AW (I ) ≥ (1 − ε)c · OPTW (I ) − b.

Since this holds for any request sequence I , WRA is at least A’s competitive ratio

on accommodating sequences.

If A is not memoryless, it is not obvious that there is a permutation of I ′ which

would cause A to accept only Iacc. However, there is clearly some online algorithm

B which would accept only Iacc. Following the preceding reasoning, assuming B’s

competitive ratio on accommodating sequences is c, BW (I ′) ≥ (1 − ε)c · p(I ′) − b
implies AW (I ) ≥ (1 − ε)c · OPTW (I ) − b. Thus, WRA is at least B’s competitive

ratio on accommodating sequences.

Theorem 5.2, combined with results on the competitive ratio on accommodating

sequences [Bach et al. 2003], immediately gives that for k much larger than n, the
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worst order ratio for any deterministic algorithm for the unit price problem is close

to 1
2
.

COROLLARY 5.3. The worst order ratio for any deterministic algorithm for the
unit price problem with n ≥ 3 seats is at least 1

2
and at most 1

2
+ 3n−3

2k+6n−(8+2c)
, where

k ≥ 7 and c = (k − 1) mod 6.

This result is interesting in that it gives a much more optimistic prediction for the

unit price problem than the competitive ratio which is not bounded below by a con-

stant. For the proportional price problem, the competitive ratio on accommodating

sequences has not been shown to be different from the competitive ratio. Thus, if

we similarly try to extend the Theorem 5.2 to the proportional price problem, we

do not get any results that are different from the competitive ratio.

These results are also useful when considering the relative worst order ratio. The

next corollary gives bounds on the relative worst order ratios for the algorithms we

consider.

COROLLARY 5.4. For any two comparable deterministic algorithms A and B,

—for the unit price problem, 1
2

≤ WRA,B ≤ 2, and

—for the proportional price problem 1
k−1

≤ WRA,B ≤ k − 1 .

PROOF. This follows from Theorem 5.2 plus the fact that the competitive ratio
on accommodating sequences for any algorithm is at least 1

2
for the unit price

problem and at least 1
k−1

for the proportional price problem [Boyar and Larsen

1999].

6. First-Fit, Best-Fit, and Worst-Fit

6.1. UNIT PRICE PROBLEM. In this subsection, we investigate the relative worst

order ratios of First-Fit, Best-Fit, and Worst-Fit for the unit price problem. Without

loss of generality, we assume within the proofs that the price of all tickets is one

unit of profit. The algorithms we consider make the same decisions regardless of

the pricing policy used. Thus, we can make some conclusions about their rela-

tive performance for the proportional price problem while analyzing their relative

performance for the unit price problem.

6.1.1. First-Fit Is at Least as Good as Any Any-Fit Algorithm. Our first result

is based on the fact that given an input sequence and First-Fit’s arrangement of it,

an Any-Fit algorithm can be forced to make the exact same seat arrangements by

permuting the sequence in an appropriate way.

THEOREM 6.1. For any Any-Fit algorithm A, regardless of pricing policy,

WRFF,A ≥ 1.

PROOF. We consider an arbitrary input sequence I and its worst-case permu-

tation for First-Fit, IFF. We show that there exists a permutation of I , IA, such that

A(IA) = FF(IFF). This will imply that FF W(I ) = FF(IFF) = A(IA) ≥ A W(I ).

Since this will hold for all I, we will have proven the theorem.

Without loss of generality, we assume that all requests which are rejected by

First-Fit appear last in IFF and that when A must choose a new seat to activate, it

chooses the first available inactive seat.
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48:10 J. BOYAR AND P. MEDVEDEV

Let the height of a request in IFF be the seat it was assigned to by First-Fit

and ∞ if it was rejected by First-Fit. Let IA be a permutation of I where all the

requests appear in order of nondecreasing height. We prove that A(IA) = FF(IFF)

by induction. The induction hypothesis is that after processing all requests with

height up to and including i , A will make the same seat assignments as First-Fit.

For the base case i = 0, no seats have been assigned so the inductive hypothesis

holds trivially.

For the general case of 1 ≤ i ≤ n, we consider when A encounters the first

request with height i . At this point, A has filled the first i − 1 seats exactly as

First-Fit, and seats i . . . n remain inactive. Since this request could not be fit into

any of the first i −1 seats by First-Fit, it cannot be fit into any of the first i −1 seats

by A. It will therefore be placed in the first available inactive seat, which is seat i .

Now consider when A encounters any other request r with height i . At this point,

A has filled the first i − 1 seats with at least the same requests as First-Fit, and now

it has activated other seats as well. Seat i is now active. Again, r cannot fit into any

of the first i − 1 seats. Moreover, since the only possible requests to be placed on

seat i at this point must have height i and all requests with the same height must

be nonoverlapping, A can fit r in seat i . Since A is an Any-Fit algorithm, it will

necessarily assign r to seat i .

For the case of i = ∞, A is not able to accommodate these requests because if

it would, then First-Fit would have accommodated them as well. Therefore, A will

reject these requests.

This theorem alone does not separate First-Fit from Best-Fit, but the following

theorem gives us a family of input sequences for which First-Fit will outperform

Best-Fit.

THEOREM 6.2. For the unit price problem with k ≥ 10,

5 − 4√
4k+9−5

3
≤ WRFF,BF ≤ 2.

PROOF. The upper bound follows directly from Corollary 5.4. Since Theo-

rem 6.1 shows that WRFF,BF ≥ 1, it is sufficient to find a family of sequences

In with limn→∞ FFW(In) = ∞ such that for all In , FFW(In) ≥ 5− 1√
4k+9−5

3
BFW(In).

As a convention, we assume an algorithm has n seats available when processing

the sequence In . Note that as long as In is defined for arbitrarily large n, it is not

necessary for it to be defined for every n.

Let j = �
√

4k+9−3

2
. We define the family of sequences {In | n is divisible by j}.

The sequence is made up of request tuples. For 1 ≤ i ≤ j , let gi be the request

tuple [1 + j + ∑ j
x=i+1 x, j + ∑ j

x=1 x + ∑i
x=1 x), [i, i + 1), [k − i, k − i + 1).

Now, In consists of n
j requests for g1, followed by n

j requests for g2, and so on until

finally there are n
j requests for g j . The sequence finally finishes with n − n

j requests

tuples for [1, j + 1) and [k − j, k).

Notice that every request falls into either the left interval [1, j + 1), the middle

interval [ j + 1, k − j − 1), or the right interval [k − j, k). The middle interval

contains only n requests. The left and right intervals contain requests of length

either 1 or j (the length of the whole interval), and the density of the intervals is n.

Based on these facts, First-Fit will accept all the requests regardless of the ordering,
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FIG. 1. The behavior of Best-Fit for the sequence in Theorem 6.2, when k = 28.

so FFW(In) = n(5 − 2
j ). The seating arrangement of Best-Fit is shown in Figure 1.

The requests in the middle interval extend closer and closer to the endpoints, so

Best-Fit places the requests within a tuple on the same set of seats. Thus, Best-Fit

places exactly one left interval, one middle interval, and one right interval on each

seat. It does not accommodate any of the last 2 · (n − n
j ) requests, so BFW(In) = 3n.

Using the fact that j = �
√

4k+9−3

2
 ≥

√
4k+9−5

2
, we get that

FFW(In) ≥
5 − 2

j

3
BFW(In) ≥

5 − 4√
4k+9−5

3
BFW(In).

This result means that the lower bound on WRFF,BF approaches 5/3 asymptoti-

cally. It remains an open problem to close the gap between between the lower and

upper bounds, though the relative performance of First-Fit to Best-Fit is established.

6.1.2. Worst-Fit Is at Least as Bad as Any Algorithm. Worst-Fit spreads out the

requests, creating many short empty intervals instead of fewer but longer empty

intervals as with Best-Fit. The following theorem shows that this strategy is not

very successful.

THEOREM 6.3. For any algorithm A, regardless of pricing policy,

WRA,WF ≥ 1.

PROOF. We consider an arbitrary input sequence I and its worst-case permuta-

tion for A, IA. First, suppose that A is deterministic. We will show that there exists

a permutation of I , IWF, for which Worst-Fit will reject at least all the elements that

A rejected. This will imply A W(I ) = A(IA) ≥ WF(IWF) ≥ WF W(I ). Since this

will hold for all I, we will have proven the theorem.

We construct IWF by ordering all the requests A accepted in nondecreasing order

of their start station, followed by all the rejected requests in arbitrary order. Let r be

any request rejected by A. Consider the set of requests S = {s1, s2, . . . , sn}, which

are the first n elements in IWF that overlap r . Such a set must exist since r was

rejected by A. We claim that no two requests from S will be placed in the same seat

by Worst-Fit. If the claim holds, then it will imply that r is rejected by Worst-Fit.

We prove the claim by contradiction. Suppose there exist two requests x, y ∈ S
such that Worst-Fit places them in the same seat. Without loss of generality, we

assume Worst-Fit processes x before y. Since requests appear in nondecreasing

order of their start station in IWF, we have that y lies to the right of x . Now consider

the point in time when Worst-Fit processes y. Since S contains the first n requests

in IWF overlapping r , and Worst-Fit has not processed all of them yet, there must

be a seat for which the interval r is still empty. Furthermore, since Worst-Fit has

not yet processed any requests that lie completely to the right of r , there exists a

free interval on this seat of length s ≥ k − r s into which Worst-Fit could place y.
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On the other hand, the free interval on the seat of x has length s ′ ≤ k − x f . Since

s > s ′, Worst-Fit would not place y on the same seat as x , and therefore we have

reached a contradiction.

Now, suppose A is a randomized algorithm. If B is some fixed setting of the

random bits used by A, then define AB to behave exactly as A when the random

bits are fixed to B. By the properties of expectation, there must be some B such

that AB(IA) ≤ E[A(IA)]. Since AB is deterministic, we can use the preceding argu-

ments for a deterministic algorithm to show that AW(I ) = E[A(IA)] ≥ AB(IA) ≥
WF(IWF) ≥ WFW(I ).

Additionally, we can prove an asymptotically tight bound for the relative worst

order ratio of Worst-Fit to both First-Fit and Best-Fit, which is as bad as Worst-

Fit can be with respect to any algorithm. The following proof uses a family of

sequences, first used in Boyar et al. [2003], which can be intuitively seen to cause

Worst-Fit to perform very poorly. This idea is formalized with respect to the relative

worst order ratio in the following theorem.

THEOREM 6.4. For any Any-Fit algorithm A for the unit price problem,

2 − 1

k − 1
≤ WRA,WF ≤ 2.

PROOF. The upper bound follows directly from Corollary 5.4. Since Theorem

6.3 implies that WRA,WF ≥ 1, to prove the lower bound, it is sufficient to find a

family of sequences In with limn→∞ AW(In) = ∞, where there exists a constant b
such that for all In , A W(In) ≥ (2 − 1

k−1
)WF W(In) − b.

We construct a family of sequences {In | n is divisible by k − 1} as fol-

lows. We begin the request sequence with n
k−1

requests for each of the intervals

[1, 2), [2, 3), . . . , [k − 1, k). We finish the sequence with n − n
k−1

requests for the

interval [1, k). Regardless of the ordering, A will accommodate all requests so that

A W(In) = 2n − n
k−1

. For Worst-Fit, the given ordering is the worst-case ordering,

and it will fill all the available seats with the first n requests, while rejecting all

the remaining requests. Therefore, WF W(In) = n. This gives us the needed ratio;

A W(In) ≥ (2 − 1
k−1

)WF W(In) − 1.

COROLLARY 6.5. 2 − 1
k−1

≤ WRFF,WF ≤ 2 and 2 − 1
k−1

≤ WRBF,WF ≤ 2.

Thus, we obtain a clear separation between Worst-Fit and First-Fit/Best-Fit, and

the bounds on the ratio are asymptotically tight.

6.2. PROPORTIONAL PRICE PROBLEM. For the proportional price problem, the

ticket price is proportional to the distance traveled. Without loss of generality, we

assume in the proofs that the price of a ticket from station i to station j is j − i . It

turns out that many of the results for the unit price problem can be transferred to

the proportional price problem. Specifically, we still have the result that First-Fit

is at least as good as any Any-Fit algorithm, and Worst-Fit is at least as bad as

any algorithm. One difference is that the value of the relative worst order ratio of

First-Fit to Best-Fit is different as we show in the following theorem.

THEOREM 6.6. For the proportional price problem with k ≥ 6,

k + 2

6
≤ WRFF,BF ≤ k − 1.
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PROOF. The upper bound follows directly from Corollary 5.4. Since Theorem

6.1 shows that WRFF,BF ≥ 1, it is sufficient to find a family of sequences In with

limn→∞ FFW(In) = ∞, such that for all In , FF W(In) ≥ k+2
6

BF W(In).

We define the family of sequences In only for even n. Consider this sequence

beginning with n
2

request tuples [1, 2), [k − 1, k), followed by n
2

request tuples

[k − 3, k) and [2, 3). Finally, the sequence concludes with n
2

requests tuples [1, k −
3). First-Fit will be able to place all the requests regardless of their ordering so

FFW (In) = (k + 2) · ( n
2
). On the other hand, Best-Fit will not accommodate any

of the last n
2

requests when given the specified ordering, so BF(In) = 6 · ( n
2
). The

needed ratio follows.

Unlike the unit price problem, the relative worst order ratio of First-Fit to Best-

Fit is not bounded by a constant independent of k. Moreover, the gap between the

lower bound and the upper bound increases as k goes to infinity, meaning that the

bounds are not asymptotically tight. It would be interesting to see if they can be

tightened to be so.

The second difference between the proportional and unit price problem is the

relative worst order ratio of Worst-Fit to any Any-Fit algorithm. Specifically, we

have the following theorem.

THEOREM 6.7. For any Any-Fit algorithm A for the proportional price problem,

WRA,WF = k − 1.

PROOF. The upper bound follows directly from Corollary 5.4. Since Theorem

6.3 shows that WRA,WF ≥ 1, it is sufficient to find a family of sequences In with

limn→∞ AW(In) = ∞, such that for all In , AW(In) ≥ (k − 1)WFW(In).

We use the same sequence as was used in the proof of Theorem 6.4. The algo-

rithms will still accept and reject the same requests, but the profit must be calculated

differently. WFW(In) = n still holds, but now AW(In) = n · (k − 1). The resulting

ratio for the lower bound follows.

Thus, the ratio of Worst-Fit to any Any-Fit algorithm is exact and is as bad as

can be. We note that in the proof, we consider the same ordering of the sequence

for both Worst-Fit and A, and A behaves exactly as OPT. This means we can also

use the same sequence to prove that the competitive ratio for Worst-Fit is the worst

possible among deterministic algorithms.

7. The KTA Algorithm

The problem of coloring an interval graph online is equivalent to the seat reservation

problem with a different goal, minimizing the number of seats. In this scenario, all

requests are accepted and the goal is to do it using as few seats as possible. An

optimal 3-competitive algorithm (KT) for this problem is given by Kierstead and

Trotter [1981]. Specifically, for an input sequence of density d, KT uses no more

than 3d − 2 seats. Since KT assigns every request to a seat, it can be used for the

seat reservation problem as long as there are at least 3d − 2 seats (or, equivalently,

the density is no more than n+2
3

, where n is the number of seats). Of course,

such a guarantee cannot be made in an online setting, but we can supplement the

algorithm so that those requests assigned to seats that do not exist are placed on

one of the existing seats, according to some other rule. This strategy gives rise to
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the KTA algorithm. It is stated in the following as exactly the KT algorithm with

the supplements in bold.

KTA ALGORITHM. Initialize the sets Bi = {} for 1 ≤ i ≤ n+2

3
. To process a new interval x, find

the smallest j , 1 ≤ j ≤ n+2

3
such that for all h, j ≤ h ≤ n+2

3
, the set of intervals {x} ∪ ⋃h

i=1 Bi has
density no more than h. If such a j does not exist, then use algorithm A to process x . Otherwise:
Set B j = Bj ∪ {x}. If j = 1, then place x on the first seat, otherwise use First-Fit to place x on one
of the seats in {3 j − 4, 3 j − 3, 3 j − 2}. If First-Fit is not able to place x in the specified seat(s),
then use A to process x .

Note that KTA is not fully specified unless A is specified. Thus KTA actually

refers to a class of algorithms defined over all possible seat reservation algorithms A.

However, since the following analysis applies to any algorithm A, we will slightly

abuse notation and treat KTA as a single algorithm.

In Kierstead and Trotter [1981], it is shown that for densities no more than n+2
3

the cases in bold never occur. KTA, however, must be defined for all densities.

Thus, it deals with the cases in bold by invoking A. However, if the density does

not exceed n+2
3

, then those cases never occur, and KTA reduces to KT. We thus

have the following lemma.

LEMMA 7.1. If the density of the input sequence is no more than n+2
3

, then KTA

will accept all the requests.

The major goal of this section is to prove Theorem 7.6, which states that KTA is

incomparable to First-Fit, incomparable to Best-Fit, and strictly better than Worst-

Fit. We first show that there exist sequences where First-Fit and Best-Fit outperform

KTA.

LEMMA 7.2. For any Any-Fit algorithm B, there does not exist a constant b
such that KTA

W (I ) ≥ BW (I ) − b for all I , for both the unit and proportional price
problem.

PROOF. We define a family of sequences In such that limn→∞ BW(In) −
KTA

W(In) = ∞. Thus, given a constant b to counter the claim of the lemma,

we can always pick n large enough so that the sequence In disproves the counter

claim.

For the sequence In , we require that n = 3 j − 2 for some positive integer j and

that k ≥ 2 j + 1. There are four groups of requests, appearing in the order given.

—[4, 2 j + 1), [6, 2 j + 1), . . . , [2 j, 2 j + 1).

—[1, 3), [3, 5), . . . , [2 j − 1, 2 j + 1).

—[2, 4), [4, 6), . . . , [2 j − 4, 2 j − 2).

—2 j − 5 requests for [1, 2 j + 1).

First, consider KTA
W(In), and, more specifically, KTA(In). The i th request from

the first group is put in set Bi and placed on seat 3i − 4 except that the first request

is placed on seat 1. The same is true for the i th requests from the second group.

The i th request from the third group is put in set Bi+1 and placed on seat 3i . At this

point, because of the fairness restriction, it is not important how KTA is defined,

as exactly j of the last requests are accommodated. So KTA accepts all requests

except the last j − 5. See Figure 2 for an illustration.
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FIG. 2. An example of how KTA seats the requests from the first three groups with n = 16 and

k = 13.

Now, consider BW(In). We claim that B accommodates all the requests regard-

less of their order. Let σ (In) be the worst-case permutation of In for B. Call the

requests from groups two and three small and the requests from groups one and

four big. We partition σ (In) into phases. We define the 0th phase to be empty and

to precede all others. It is followed by 3 j − 6 phases, each consisting of some

(possibly zero) consecutive small requests, followed by one big request. Finally,

the last phase consists of all the requests (possibly zero) after the last big request.

Note that the phase partitioning is unique and that the number of the last phase is

3 j − 5.

We prove that, after the i th phase, all requests have been accepted and there are

at most i + 3 active seats. Since the number of the last phase is three less than the

number of seats, it suffices to show that all requests from the i th phase are assigned

to a seat number no more than i + 3. The base case of i = 0 is trivial since there

are no requests. For the inductive step, consider the beginning of the i th phase. By

the induction hypothesis, there are at most i − 1 + 3 active seats. Of these seats,

i − 1 must have a big request assigned to them (since no two big requests can share

a seat). Assume without loss of generality that those seats are labeled 1 . . . i − 1

if i > 1. Then, seats i, i + 1, and i + 2 are either inactive or have only small

requests assigned to them. Then, any small request appearing in the i th phase can

be assigned to one of these 3 seats since a small request can overlap at most two

other small requests (this is just a property of the request sequence). Then, if there

is a big request at the end of the phase, it will be assigned to at most the i + 3rd

seat, completing the inductive step.

Specifically, the induction hypothesis applied to the last phase implies that B

accepts all requests from σ (In). Thus, B is able to accommodate j −5 requests more

than KTA. Given that both the unit and proportional pricing policies assign at least

one unit of profit to an accepted request, we have that BW(In) ≥ KTA(In)+ j −5 ≥
KTA

W(In) + n−13
3

. The statement of the limit follows directly.
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To achieve the incomparability result for First-Fit, we now show that there also

exist sequences where KTA outperforms First-Fit. In fact, First-Fit has also been

studied in the context of online interval graph coloring. In this variant, First-Fit

never rejects any requests, but otherwise behaves exactly as it would for the seat

reservation problem. A lower bound exists [Chrobak and Ślusarek 1988] that gives

a family of sequences where First-Fit will use at least 4d − 9 seats, where d is

the density. An adaptation of that argument for this problem, with very minor

modifications [Boyar and Medvedev 2007], gives that First-Fit uses 4d − 21 seats

for a sequence with density d = (n + 2)/3. By Lemma 7.1, KTA accepts all of

these requests regardless of order, but First-Fit must reject at least one request for

each seat it needs over the n = 3d − 2 seats available. So

KTA
W(In) − FFW(In) ≥ KTA

W(In) − FF(In) ≥ 4d − 21 − (3d − 2)

= n + 2

3
− 19 → ∞ as n → ∞.

We thus have the following lemma.

LEMMA 7.3. There does not exist a constant b such that KTA
W (I ) ≤ FFW(I )+b

for all I for both the unit and proportional price problem.

The family of sequences used in the previous proof requires k to be exponential

in the number of seats [Boyar and Medvedev 2007]. In the proof of Lemma 7.2, we

require k to be of the order of n. These requirements may seem too strong, but they

nevertheless disprove any possibility of a statement that the relative worst order

ratio is defined for some k ≥ c, for any constant c. However, there remains the

possibility that, for some special case where k is restricted from above, the relative

worst order ratio can be defined.

Now, we turn our attention to Best-Fit. Given Lemma 7.2, it only remains to

show that there exist sequences where KTA outperforms Best-Fit. This follows im-

mediately from the previous lemma because Best-Fit packs the family of sequences

from the proof exactly the same as First-Fit. However, we give a different family

of sequences in the next lemma, because the value of k required is much smaller.

LEMMA 7.4. There does not exist a constant b such that KTA
W (I ) ≤ BFW(I )+b

for all I for both the unit and proportional price problem.

PROOF. We define a family of sequences In such that limn→∞ KTA
W(In) −

BFW(In) = ∞. For the sequence In , we require that n = 6 j for some positive integer

j and that k ≥ 28. In consists of [27, 28) j , [1, 2) j , [25, 28) j , [2, 3) j , [22, 28) j ,

[3, 4) j , [18, 28) j , [4, 5) j , [13, 28) j , [5, 6) j , [7, 28) j , [6, 7) j , [1, 7) j , where [s, f ) j

denotes j requests for interval [s, f ). Note that all these requests are subintervals

of either [1,7) or [7,28).

First, we claim that KTA accepts all the requests in this sequence regardless of

the ordering. Note that the density within the interval [1,7) is 2 j = n
3

≤ n+2
3

. For

each request which is a subinterval of [1,7), there exists a 1 ≤ i ≤ 2 j such that it

is placed in bin i and put in seat 3i − 4 if i > 1 or in seat 1 if i = 1. Furthermore,

there are only n requests which are subintervals of [7,28), so by the principle of

fairness, KTA must accept all of them. Thus, KTA accepts all the requests.

Best-Fit, on the other hand, given the specified ordering, will never place any of

the length 1 requests on the same seat, thereby rejecting the last j requests. See
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FIG. 3. The behavior of Best-Fit for the sequence in Lemma 7.4.

Figure 3 for an illustration. Since each accepted request contributes at least one unit

of profit, we have:

KTA
W(In) − BFW(In) ≥ KTA

W(In) − BF(In) ≥ j = n

6
→ ∞ as n → ∞.

Again, the combination of Lemmas 7.2 and 7.4 disproves any possibility for

the relative worst order ratio to be defined in the general case but allows for the

possibility of the relative worst order ratio to be defined for some cases of k restricted

from above. In this scenario, however, KTA would have to be better than BF since

the proof of Lemma 7.4 only requires k ≥ 28.

This concludes the analysis of Best-Fit. Turning our attention to Worst-Fit, Theo-

rem 6.3 tells us that KTA is no worse than Worst-Fit. The exact ratio will depend on

the algorithm A. However, we can show using the following lemma that, regardless

of A, KTA is strictly better than WF.

LEMMA 7.5. For k ≥ 5, there does not exist a constant b such that KTA
W (I ) ≤

WFW (I ) + b for all I for both the unit and proportional price problem.

PROOF. We define a family of sequences In such that limn→∞ KTA
W(In) −

WFW(In) = ∞. We assume that n is divisible by k − 1. In consists of n
k−1

requests

for each of the intervals [1, 2), [2, 3), . . . , [k − 1, k), followed by � n(k−4)

3(k−1)
 requests

for [1, k). Since the density of In is n
k−1

+� n(k−4)

3(k−1)
 ≤ n

3
, Lemma 7.1 gives that KTA

will accept all the requests regardless of the ordering. Worst-Fit, however, will

reject the last � n(k−4)

3(k−1)
 requests given the specified ordering. Since each accepted

request contributes at least one unit of profit, we have that KTA
W(In)−WFW(In) ≥

� n(k−4)

3(k−1)
 → ∞ as n → ∞.

In the following theorem, all the results obtained in this section are summarized.

THEOREM 7.6. For both the unit and proportional price problem,

—KTA is incomparable to First-Fit,

—KTA is incomparable to Best-Fit,

—for k ≥ 5, WRKTA,WF > 1.

PROOF. The incomparability of KTA to First-Fit is established by Lemmas 7.2

and 7.3. The incomparability of KTA to Best-Fit is established by Lemmas 7.2 and

7.4. The fact that KTA is strictly better than Worst-Fit is established by Theorem 6.3

and Lemma 7.5.

ACM Transactions on Algorithms, Vol. 4, No. 4, Article 48, Publication date: August 2008.



48:18 J. BOYAR AND P. MEDVEDEV

8. Randomized Algorithms

In this section, we consider the most intuitive randomized algorithm, Random

(RND), defined in Section 3, and show that it is incomparable to any Any-Fit algo-

rithm. The first step is to prove that Random’s performance cannot be better than

or equal to that of any Any-Fit algorithm for all sequences, and this is achieved by

the following lemma.

LEMMA 8.1. Let A be any Any-Fit algorithm. Then there does not exist a con-
stant b such that, for all I , RNDW(I ) ≥ AW(I ) − b, for both the unit price and
proportional price problem.

PROOF. Consider the following family of sequences In , defined for n divisible

by 2. First there are n
2

requests for [1,2), then there are n
2

requests for [k-1,k), and

finally, there are n
2

requests for [1,k). Clearly, A will accept all requests regardless

of the ordering. We will show that limn→∞ AW(In) − RNDW(In) = ∞, which will

imply the statement of the lemma.

In general, for any random algorithm R, we have

AW(In) − RW(In) = OPT(In) − min
σ

E[R(σ (In))]

≥ OPT(In) − E(R(In))

=
OPT(In)∑

x=0

(OPT(In) − x) · P[R(In) = x].

This result is intuitively simple. When the deterministic algorithm is optimal re-

gardless of the ordering, then the goal of minimizing the expected difference of

accepted requests is the same as the goal of maximizing the expected number of

rejected requests of the random algorithm. Moreover, for a lower bound, we can

consider any permutation of the sequence we wish, which in this case will be the

specified order. For In , the probability of rejecting x requests is the probability of

having exactly x requests from the second group assigned to inactive seats. Given

an assignment for the first group of requests, there are
( n

2

x

)( n
2

n
2
−x

)
possibilities for

this out of a total of
(n

n
2

)
. Since all assignments are equally likely, we can conclude

the preceding calculation as follows:

AW(In) − RNDW(In) ≥
n
2∑

x=0

x ·
( n

2

x

)2

(n
n
2

) =
n
2(n
n
2

)
n
2∑

x=0

( n
2

x

)( n
2

− 1

x − 1

)

=
n
2(n
n
2

)
(

n − 1
n
2

− 1

)
= n

4
.

Here, we assume that
(n

k

) = 0 when k < 0, and the summation is removed by

applying Vandermonde’s convolution [Graham et al. 1988]. The inequality comes

from the fact that both the unit price and proportional price algorithms must assign

at least one unit of profit to each accepted request. The statement of the limit follows

directly.

To prove the incomparability result, we next show that the performance of any

Any-Fit algorithm A can be worse than that of Random for some sequences. We
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consider the following family of sequences In , defined for n divisible by 2. It

consists of n
2

requests for [1,2), n
2

requests for [k − 1, k), n
2

requests for [1, k − 1),

and n
2

requests for [2, k). Call the requests of length 1 short, and the requests of

length k − 2 long. In an ordering where all the short requests come before all the

long requests, A will seat only 3n
2

requests.

It is necessary to find the worst permutation of In for Random. Regardless of

the ordering, all the short requests are accepted. The more short requests that have

been placed already, the greater the chances of a long request having to be rejected.

This intuition explains why having all the short requests before all the long requests

gives a worst permutation for Random. We now proceed to prove that this is in fact

the case.

Call the requests [1, k − 1) long-left requests, the requests [2, k) long-right re-

quests, the requests [1, 2) short-left requests, and the requests [k − 1, k) short-right

requests.

LEMMA 8.2. None of the short requests can be rejected by any (deterministic
or randomized) algorithm.

PROOF. The density is at most n everywhere, so no length 1 requests can be

rejected.

LEMMA 8.3. The number of requests rejected by any (deterministic or random-
ized) algorithm is equal to the number of seats which receive two short requests.

PROOF. First, note that if there are j seats with two short requests, then there

are j seats which do not contain a long request. At most one long request can be

placed on any seat, and there are n long requests in all, so at least j long requests

must be rejected.

Suppose there are j rejected requests. By Lemma 8.3, they must all be long, so

they contain the subinterval [2, 3). Since I is an accommodating sequence, there

must be at least j seats which are empty from station 2 to station 3. Each of these j
seats must contain some request which overlaps each rejected request. If both long-

left and long-right requests are rejected, then each of these j seats must contain both

types of short requests. Suppose only long-left (long-right) requests are rejected.

Then, every seat must contain either a long-right (long-left) or a short-right (short-

left) request since there are n such requests and none are rejected. The j seats which

are empty in the subinterval [2, 3) must thus have short-right (short-left) requests.

They must also have short-left (short-right) requests since long-left (long-right)

requests were rejected. In either case, there must be at least j seats with two short

requests.

This shows that the number of rejected requests must be exactly the number of

seats with two short requests.

LEMMA 8.4. There is no ordering of the requests for which the expected number
of seats to which Random assigns two short requests is greater than when all the
short requests come first.

PROOF. Suppose for the sake of contradiction that on the ordering I1, the ex-

pected number of seats where Random assigns two short requests is greater than

when all the short requests come first. We will modify I1, step-by-step, eventually

getting to an ordering Ifinal with all short requests first but without decreasing the
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expected number of seats where Random assigns two short requests. This will give

the contradiction.

Denote by f (I ) the expected number of seats where Random assigns two short

requests, where I is a permutation of In . In order to show that f (Ifinal) ≥ f (I1),

we consider Random’s source of randomness. We assume, without loss of gener-

ality, that Random has a source of random numbers which can be represented as

a set of sequences of random bits where a sequence corresponding to one execu-

tion of Random is called a random sequence. In the following, this set of random

sequences is partitioned based on the output of Random on I1 given these ran-

dom sequences, and it is shown for each part of the partition that the reordering

does not decrease the expected number of seats where Random assigns two short

requests.

Let x be the last long request in I1 which is immediately followed by a short

request. Assume without loss of generality that x is long-left, and move all short-

right requests which occur after it immediately before it. Call this new ordering

I2. The short requests which have been moved before x are placed independently

of x in I1’s ordering. Therefore, f (I1) = f (I2). If x is no longer followed by any

short requests, we are finished with this step and proceed to find a new request x if

such a request exists. Otherwise, assume x is followed by i > 0 short-left requests.

Move x just after these i Type C requests and call the new ordering I3. Observe

that we can continually apply these two reorderings until we get to a permutation

Ifinal where all the small requests come first. Thus, all that remains to show is that

f (I3) ≥ f (I2).

For those sequences of random bits which cause Random to reject x in I2, x is

also rejected in I3, in which case f (I3) = f (I2). For the other case, consider the

set R(r, s, t) of random sequences which lead Random to accept x in I2 and cause

Random to place the prefix of I2 preceding x such that r seats have only long-

right requests, s seats have only short-right requests, and t seats are empty. The

request x can only be placed on empty seats or those containing only short-right

requests, whereas the i short-left requests can also be placed on any seat containing

only a long-right request. When Random is run using a random sequence from

R(r, s, t) on the sequence I2, the request x has probability s
s+t of being placed

on the same seat as a short-right request and probability t
s+t of being placed on

a seat which is empty. Thus, the expected number of the last i short-left requests

which are placed with short-right requests (all of which have already been placed)

is s
s+t (

(s−1)i
r+s+t−1

) + t
s+t ( si

r+s+t−1
) = si

s+t ( s+t−1
r+s+t−1

) ≤ si
r+s+t . This last value is also

the expected number of the last i short-left requests which are placed with short-

right requests when Random is run using a random sequence from R(r, s, t) on

the sequence I3. Since this holds for all possible sets R(r, s, t), this implies that

f (I3) ≥ f (I2).

By Lemma 8.3, the probability of rejecting x requests is the probability of having

exactly x seats which have two short requests placed on them. But the expected

number of such seats was already calculated in the proof of Lemma 8.1 and is n
4
.

Thus, for the unit price problem and any Any-Fit algorithm A, minσ E[A(σ (In))] =
3n
2

, while minσ E[RND(σ (In))] = 2n − n
4

= 7n
4
, and limn→∞ RNDW(In)−AW(In) =

∞. Similarly, for the proportional price problem, minσ E[A(σ (In))] = nk
2

, while

minσ E[RND(σ (In))] = n(k − 1) − n
4
(k − 2) = 3nk

4
− 3n

2
.
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This gives us the following:

THEOREM 8.5. Random is incomparable to any Any-Fit algorithm for both the
unit price problem and the proportional price problem.

With respect to Worst-Fit, the results can be obtained more easily. However, finding

the exact value of WRRND,WF does not seem to be an interesting direction of research

since the fact that Worst-Fit is not an effective algorithm seems to be established.

9. Concluding Remarks and Open Problems

The relative worst order ratio has previously been applied to some problems and has

led to intuitively and/or experimentally correct results which could not be obtained

with the competitive ratio [Boyar and Favrholdt 2003; Boyar et al. 2005; Epstein

et al. 2006; Kohrt 2004]. Now, for the seat reservation problem, applying the relative

worst order ratio has also proven very helpful in differentiating between various

algorithms that could not be differentiated with the competitive ratio. Moreover,

previous work studying the seat reservation problem with respect to the compet-

itive ratio and the competitive ratio on accommodating sequences has essentially

ignored the proportional price problem since all the results have been so negative.

In contrast, the relative worst order ratio allows us to easily compare algorithms for

the proportional price problem.

It remains interesting to see if the assumption that A is memoryless is necessary

in Theorem 5.2. As is, Theorem 5.2 is interesting in that it gives a relationship

between the relative worst order ratio and the competitive ratio on accommodating

sequences. The direction showing that the worst order ratio for an algorithm A is

no larger than its competitive ratio on accommodating sequences clearly applies

to any maximization problem (and the opposite inequality for any minimization

problem). However, the other direction does not hold for all problems. For dual bin

packing, a problem where most results have resembled those for the unit price seat

reservation problem, WRA = 0 for any fair, deterministic algorithm A [Boyar and

Favrholdt 2003], although the competitive ratio on accommodating sequences is

always at least 1
2

[Boyar et al. 2001].

With respect to the algorithms described in this article, the most interesting

open problem is to close the gap for the ratio of First-Fit to Best-Fit for both the

unit price and proportional price problems. It is also of interest to see if First-Fit

is strictly better than KTA for some limited values of k. Ultimately, the goal is

to find an algorithm that is better than the existing ones as has been done for the

paging problem [Boyar et al. 2005]. In this sense, the most interesting open problem

remains to find an algorithm that does better than First-Fit or show that one does

not exist.
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