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Simple model

Generative model

I Start with a genome A

I Mutate every nucleotide with probability r1
I Get a new genome B

I Assume that all k-mers are unique.

I not the nucleotide sequences

I Nmut

I Number of mutated k-mers

I Jaccard
I J(A,B) = |A∩B|

|A∪B| =
L−Nmut
L+Nmut

I Minhash Jaccard
I Ask , minhash sketch of A
I Bsk , minhash sketch of B
I Ĵ = J(Ask ,Bsk )
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I Ĵ = J(Ask ,Bsk )



Simple model

Generative model

I Start with a genome A

I Mutate every nucleotide with probability r1
I Get a new genome B

I Assume that all k-mers are unique.

What do we observe?

I not the nucleotide sequences

I Nmut

I Number of mutated k-mers

I Jaccard
I J(A,B) = |A∩B|

|A∪B| =
L−Nmut
L+Nmut

I Minhash Jaccard
I Ask , minhash sketch of A
I Bsk , minhash sketch of B
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Motivating applications

Mash distance [Ondov et al., 2016]

I Take two evolutionary related sequences

I Observe Ĵ from two genomes

I Assume that genomes evolved under the simple model

I Estimate r1 from Ĵ.

I What about a con�dence interval for r1?
I Given that the two sequences evolved under this simple model, and we

observe Nmut , what is an interval that will contain r1 with 95% probability?
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Alignments of reads to de Bruijn graph (minimap2, jabba, lorma)

I A read is generated from a genome location
I sequencing error rate r1.

I Is a putative genome location the one that generated the read?
I We observe Nmut
I Want to accept/reject this alignment, with 95% chance of being correct.

I A hypothesis test with signi�cance level 95% for Nmut

I Given r1 what is the range into which Nmut would fall with 95% probability?



Distribution of Nmut
Expectation

Expectation is easy.

I Let Xi be the indicator r.v. if k-mer starting at position i is mutated.

I Let E[Xi ] , rk = (1− (1− r1)k ) be the probability that a k-mer is mutated.

I Nmut =
∑

Xi

I E[Nmut ] = E[
∑

Xi ] = LE[Xi ] = Lrk .



Distribution of Nmut
Expectation

Expectation is easy.

I Let Xi be the indicator r.v. if k-mer starting at position i is mutated.

I Let E[Xi ] , rk = (1− (1− r1)k ) be the probability that a k-mer is mutated.

I Nmut =
∑

Xi

I E[Nmut ] = E[
∑

Xi ] = LE[Xi ] = Lrk .

Is Nmut a binomial?

I Binomial is sum of independent Bernoulli trials

I But nearby Xi s are dependent.



Dependency lemma and variance

Lemma
I If j − i ≥ k, then Xi and Xj are independent

I If j − i < k, Pr[Xi = 1,Xj = 1] = 2rk − 1+ (1− r1)k+j−i

Proof

Lemma
I Var[Nmut ] = L(1− rk )(rk (2k + 2

r1
− 1)− 2k) + o(L)
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M-dependent variables and Main Technique Theorem

A sequence of L random variables X0, . . . ,XL−1 is said to be m-dependent if there
exists a bounded m such that if j − i > m, then the two sets {X0, . . . ,Xi} and
{Xj , . . . ,XL−1} are independent [Hoe�ding et al., 1948].

I Nmut is sum of m-dependent variables, with m = k − 1.

I Sum of m-dependent variables is asymptotically normal [Hoe�ding et al., 1948].

I Stein's method also gives us the rate of convergence [Ross, 2011].

I We can derive hypothesis test using same strategy as with Binomial

I Main Technique Theorem

I Let X be a sum of m-dependent Bernoulli random variables.
I Then, X ∈ E[X ]± zα

√
Var(X ) with limiting∗ probability α,

I zα is value of inverse Normal CDF at (1− α)/2
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Nmut and Jaccard
Hypothesis tests and con�dence intervals

Corollary of Main Technique Theorem

I Nmut ∈ Lrk ± zα
√
Var(Nmut) with limiting∗ probability α,

∗assuming r1 and k are independent of L

To compute CI for r1,

I Numerically �nd the range of r1 for which Nmut is in the test range.

Suppose we observe T = f (Nmut)

I f (x) is a monotone function

I e.g. Jaccard = L−Nmut
L+Nmut

Corollaries

I With limiting∗ probability α,
I f (Nmut) ∈ f (Lrk ± zα

√
Var(Nmut))

I J ∈
(

L−Lrk−zα
√
Var(Nmut )

L+Lrk+zα
√
Var(Nmut )

,
L−Lrk+zα

√
Var(Nmut )

L+Lrk−zα
√
Var(Nmut )

)



Minhash Jaccard estimator
a.k.a. Mash distance

Two layers of randomness

I Mutation process
I We can apply our Main Technique

I Sketching process
I Our Main Technique does not apply
I . . . because sketch uses global information
I We use a di�erent approach

Theorem

I With limiting∗ probability α, jlow ≤ Ĵ ≤ jhigh



Islands and oceans

Island de�nition

I An island is a maximal interval of mutated k-mers.

I Sequence can be partitioned into alternated islands and oceans.

I Number of islands is
∑

i Bi .
I Bi = 1 i� the k-mer at pos i is mutated and at at i + 1 is not.
I BL−1 = 1 is special end case.
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Islands and oceans

Island de�nition

I An island is a maximal interval of mutated k-mers.

I Sequence can be partitioned into alternated islands and oceans.

I Number of islands is
∑

i Bi .
I Bi = 1 i� the k-mer at pos i is mutated and at at i + 1 is not.
I BL−1 = 1 is special end case.

Steps to derive hypothesis test for number of islands

I Derive Pr[Bi = 1,Bj = 1].

I Con�rm that Bi and Bj are independent if they are far apart.

I Derive E(Nisland ) and Var(Nisland )

I Apply Main Technique Theorem
I Nisland ∈ E(Nisland )± zα

√
Var(Nisland ) with limiting∗ probability α.



Summary of theoretical results
the expectation, variances, and intervals derived in the paper

Variable Expectation Variance α interval

Nmut Lq L(1− q)(q(2k + 2
r1
− 1)− 2k) Lq ± zα

√
Var(Nmut )

Nisland Lr1(1− q) Lr1(1− q)(1− r1(1− q)(2k + 1)) E[Nisland ]± zα
√
Var(Nisland )

Nocean Lr1(1− q) Lr1(1− q)(1− r1(1− q)(2k + 1)) E[Nocean ]± zα
√
Var(Nocean)

Jaccard � � (see prev slide)

minhash Jaccard � � (jlow , jhigh)

Cber
∗∗ L(1−q)(1+r1(k−1))

L+k−1 see paper E[Cber ]± zα
√
Var(Cber )

∗∗ Coverage by exact regions [Miclotte et al., 2016]
∗Only higher order terms are shown here, see paper for exact expressions.



Experimental results
Nmut con�dence intervals

Simulation experiments

I Starting sequence with no dup k-mers

I 10,000 replicates for each cell.

I Report fraction of replicates for which the
true r1 falls into the predicted 95% CI.

Experiments with E.Coli

I Simulation done on E.Coli sequence

I CI calculator only observes

I set of k-mers before (A)
I set of k-mers before (B)

I CI calculator de�nes

I L = (|A|+ |B|)/2.
I Nmut = L− |A ∩ B|

L = 10, 000 r1

0.001 0.01 0.1 0.2

k = 100 0.95 0.95 � �
51 0.95 0.95 0.96 �
21 0.95 0.94 0.95 0.95

L = 1, 000 r1

0.001 0.01 0.1 0.2

k = 100 0.95 0.96 � �
51 0.94 0.95 0.94 �
21 0.93 0.95 0.95 0.95

L = 100 r1

0.001 0.01 0.1 0.2

k = 100 0.91 1.00 � �
51 0.91 1.00 1.00 �
21 0.91 0.96 1.00 1.00

E.Coli r1

r1 = 0.001 0.01 0.1 0.2

k = 100 0.95 0.95 � �
51 0.95 0.95 0.95 �
21 0.95 0.94 0.93 0.94
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Experimental results
Mash distance (i.e. minhash Jaccard estimator)

I Table 1 in [Ondov et al., 2016] tested the point estimate on a range of values.
I k = 21
I L = 4, 500, 000
I Varying sketch size and r1

I We replicate their experiments, but instead predict 95% CIs
I 1,000 replicates for each cell

r1(rk )

.05(.659) .15(.967) .25(.998)

sketch size = 100 0.97 1.00 1.00
1,000 0.96 0.97 1.00
10,000 0.95 0.96 0.96
100,000 0.95 0.95 0.96

1,000,000 0.94 0.95 0.96

I We also simulated with E.coli.
r1(rk )

.05(.659) .15(.967) .25(.998)

sketch size = 100 0.97 1.00 1.00
1,000 0.97 0.96 1.00
10,000 0.96 0.96 0.97
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Experimental results
Minimap2 [Li, 2018] and Jabba [Miclotte et al., 2016] read �ltering

Minimap2

I Filters out alignment if r1 estimate is far from
error rate

I Estimates r1 from the number of seeds that
match a location
I ε̂ = 1

k
log n

m

I Using our model improves r1 estimate.
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Minimap2

I Filters out alignment if r1 estimate is far from
error rate

I Estimates r1 from the number of seeds that
match a location
I ε̂ = 1

k
log n

m

I Using our model improves r1 estimate.

Jabba

I Filters out alignment if coverage by exact
regions (Cber ) �signi�cantly deviates� from
expectation.

I What is �signi�cantly�?

I We can use a hypothesis test for Cber



Conclusion

I Simple mutation model has been widely used but never studied in depth

I We show a technique for deriving hypothesis tests and con�dence intervals
I Exploit the fact that k-mer dependecies are local

I We derive these for a few natural random variables.

I Can we predict when the approximations stop working?
I E.g. in Binomial, this is when np(1− p) is low

Variable Expectation Variance α interval

Nmut Lq L(1− q)(q(2k + 2
r1
− 1)− 2k) Lq ± zα

√
Var(Nmut )

Nisland Lr1(1− q) Lr1(1− q)(1− r1(1− q)(2k + 1)) E[Nisland ]± zα
√
Var(Nisland )

Nocean Lr1(1− q) Lr1(1− q)(1− r1(1− q)(2k + 1)) E[Nocean ]± zα
√
Var(Nocean)
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minhash Jaccard � � (jlow , jhigh)

Cber
∗∗ L(1−q)(1+r1(k−1))

L+k−1 see paper E[Cber ]± zα
√
Var(Cber )



References I

Hoe�ding, W., Robbins, H., et al. (1948).

The central limit theorem for dependent random variables.
Duke Mathematical Journal, 15(3):773�780.

Li, H. (2018).

Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18):3094�3100.

Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y., Audenaert, P., and Fostier, J.

(2016).
Jabba: hybrid error correction for long sequencing reads.
Algorithms for Molecular Biology, 11(1):1�12.

Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., and Phillippy,

A. M. (2016).
Mash: fast genome and metagenome distance estimation using minhash.
Genome biology, 17(1):132.

Ross, N. (2011).

Fundamentals of Stein's method.
Probability Surveys, 8:210�293.


