The statistics of k-mers from a sequence undergoing a simple mutation process without spurious matches

Antonio Blanca, Robert S. Harris, David Koslicki, Paul Medvedev

Pennsylvania State University

Data structures in bionformatics workshop (DSB) Feb 11-12, 2021

This paper will appear in RECOMB 2021 and is available on bioRxiv.

Talk outline

- 1. Introduce model
- 2. Motivating applications
- 3. Number of mutated k-mers
 - 3.1 expectation
 - 3.2 variance
 - 3.3 hypothesis test
 - 3.4 confidence interval
- 4. Other random variables
- 5. Experimental results

Generative model

- Start with a genome A
- Mutate every nucleotide with probability r₁
- ▶ Get a new genome B
- Assume that all k-mers are unique.

Generative model

- Start with a genome A
- Mutate every nucleotide with probability r₁
- ▶ Get a new genome B
- Assume that all k-mers are unique.

What do we observe?

- not the nucleotide sequences
- ► N_{mut}
 - Number of mutated k-mers

Generative model

- Start with a genome A
- Mutate every nucleotide with probability r₁
- ▶ Get a new genome B
- Assume that all k-mers are unique.

What do we observe?

- not the nucleotide sequences
- N_{mut}
 - Number of mutated k-mers
- Jaccard

►
$$J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{L - N_{mut}}{L + N_{mut}}$$

Generative model

- Start with a genome A
- Mutate every nucleotide with probability r₁
- ▶ Get a new genome B
- Assume that all k-mers are unique.

What do we observe?

- not the nucleotide sequences
- ► N_{mut}
 - Number of mutated k-mers
- Jaccard

$$\blacktriangleright J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{L - N_{mut}}{L + N_{mut}}$$

Minhash Jaccard

•
$$A_{sk} \triangleq$$
 minhash sketch of A
• $B_{sk} \triangleq$ minhash sketch of B
• $\hat{J} = J(A_{sk}, B_{sk})$

Motivating applications

Mash distance [Ondov et al., 2016]

- Take two evolutionary related sequences
- Observe \hat{J} from two genomes
- Assume that genomes evolved under the simple model
- Estimate r_1 from \hat{J}
- What about a confidence interval for r₁?
 - Given that the two sequences evolved under this simple model, and we observe N_{mut}, what is an interval that will contain r₁ with 95% probability?

Motivating applications

Mash distance [Ondov et al., 2016]

- Take two evolutionary related sequences
- Observe \hat{J} from two genomes
- Assume that genomes evolved under the simple model
- Estimate r_1 from \hat{J}
- What about a confidence interval for r₁?
 - Given that the two sequences evolved under this simple model, and we observe N_{mut}, what is an interval that will contain r₁ with 95% probability?

Alignments of reads to de Bruijn graph (minimap2, jabba, lorma)

- A read is generated from a genome location
 - sequencing error rate r₁.
- Is a putative genome location the one that generated the read?
 - We observe N_{mut}
 - Want to accept/reject this alignment, with 95% chance of being correct.
- A hypothesis test with significance level 95% for N_{mut}
 - Given r_1 what is the range into which N_{mut} would fall with 95% probability?

Distribution of N_{mut} Expectation

Expectation is easy.

- Let X_i be the indicator r.v. if k-mer starting at position i is mutated.
- Let $\operatorname{E}[X_i] \triangleq r_k = (1 (1 r_1)^k)$ be the probability that a k-mer is mutated.

$$N_{mut} = \sum X_i E[N_{mut}] = E[\sum X_i] = LE[X_i] = Lr_k.$$

Distribution of N_{mut} Expectation

Expectation is easy.

- Let X_i be the indicator r.v. if k-mer starting at position i is mutated.
- Let $\mathbb{E}[X_i] \triangleq r_k = (1 (1 r_1)^k)$ be the probability that a k-mer is mutated.
- $N_{mut} = \sum X_i$ $E[N_{mut}] = E[\sum X_i] = LE[X_i] = Lr_k.$

K-mers starting at pos i

Is N_{mut} a binomial?

Binomial is sum of independent Bernoulli trials

But nearby X_is are dependent.

Dependency lemma and variance

Lemma

- ▶ If $j i \ge k$, then X_i and X_j are independent
- If j i < k, $\Pr[X_i = 1, X_j = 1] = 2r_k 1 + (1 r_1)^{k+j-i}$

Dependency lemma and variance

Lemma

- ▶ If $j i \ge k$, then X_i and X_j are independent
- ▶ If j i < k, $\Pr[X_i = 1, X_j = 1] = 2r_k 1 + (1 r_1)^{k+j-i}$ Proof

Dependency lemma and variance

Lemma

- ▶ If $j i \ge k$, then X_i and X_j are independent
- ▶ If j i < k, $\Pr[X_i = 1, X_j = 1] = 2r_k 1 + (1 r_1)^{k+j-i}$ Proof

Lemma

•
$$\operatorname{Var}[N_{mut}] = L(1 - r_k)(r_k(2k + \frac{2}{r_1} - 1) - 2k) + o(L)$$

M-dependent variables and Main Technique Theorem

A sequence of *L* random variables X_0, \ldots, X_{L-1} is said to be **m-dependent** if there exists a bounded *m* such that if j - i > m, then the two sets $\{X_0, \ldots, X_i\}$ and $\{X_i, \ldots, X_{L-1}\}$ are independent [Hoeffding et al., 1948].

$$X_0$$
 X_{L-1}

- N_{mut} is sum of m-dependent variables, with m = k 1.
- Sum of m-dependent variables is asymptotically normal [Hoeffding et al., 1948].
- Stein's method also gives us the rate of convergence [Ross, 2011].
- We can derive hypothesis test using same strategy as with Binomial
- Main Technique Theorem
 - Let X be a sum of m-dependent Bernoulli random variables.
 - Then, $X \in E[X] \pm z_{\alpha} \sqrt{\operatorname{Var}(X)}$ with limiting* probability α ,

> z_{α} is value of inverse Normal CDF at $(1-\alpha)/2$

M-dependent variables and Main Technique Theorem

A sequence of *L* random variables X_0, \ldots, X_{L-1} is said to be **m-dependent** if there exists a bounded *m* such that if j - i > m, then the two sets $\{X_0, \ldots, X_i\}$ and $\{X_i, \ldots, X_{L-1}\}$ are independent [Hoeffding et al., 1948].

- N_{mut} is sum of m-dependent variables, with m = k 1.
- Sum of m-dependent variables is asymptotically normal [Hoeffding et al., 1948].
- Stein's method also gives us the rate of convergence [Ross, 2011].
- We can derive hypothesis test using same strategy as with Binomial
- Main Technique Theorem
 - Let X be a sum of m-dependent Bernoulli random variables.
 - Then, $X \in E[X] \pm z_{\alpha} \sqrt{\operatorname{Var}(X)}$ with limiting* probability α ,

> z_{α} is value of inverse Normal CDF at $(1-\alpha)/2$

M-dependent variables and Main Technique Theorem

A sequence of *L* random variables X_0, \ldots, X_{L-1} is said to be **m-dependent** if there exists a bounded *m* such that if j - i > m, then the two sets $\{X_0, \ldots, X_i\}$ and $\{X_i, \ldots, X_{L-1}\}$ are independent [Hoeffding et al., 1948].

- N_{mut} is sum of m-dependent variables, with m = k 1.
- Sum of m-dependent variables is asymptotically normal [Hoeffding et al., 1948].
- Stein's method also gives us the rate of convergence [Ross, 2011].
- We can derive hypothesis test using same strategy as with Binomial
- Main Technique Theorem
 - Let X be a sum of m-dependent Bernoulli random variables.
 - Then, $X \in E[X] \pm z_{\alpha} \sqrt{\operatorname{Var}(X)}$ with limiting* probability α ,

 \triangleright z_{α} is value of inverse Normal CDF at $(1-\alpha)/2$

N_{mut} and Jaccard

Hypothesis tests and confidence intervals

Corollary of Main Technique Theorem

► $N_{mut} \in Lr_k \pm z_\alpha \sqrt{\operatorname{Var}(N_{mut})}$ with limiting* probability α , *assuming r_1 and k are independent of L

To compute CI for r1,

Numerically find the range of r₁ for which N_{mut} is in the test range.

Suppose we observe $T = f(N_{mut})$

f(x) is a monotone function

• e.g. Jaccard =
$$\frac{L-N_{mut}}{L+N_{mut}}$$

Corollaries

► With limiting* probability
$$\alpha$$
,
► $f(N_{mut}) \in f(Lr_k \pm z_\alpha \sqrt{\operatorname{Var}(N_{mut})})$
► $J \in \left(\frac{L - Lr_k - z_\alpha \sqrt{\operatorname{Var}(N_{mut})}}{L + Lr_k + z_\alpha \sqrt{\operatorname{Var}(N_{mut})}}, \frac{L - Lr_k + z_\alpha \sqrt{\operatorname{Var}(N_{mut})}}{L + Lr_k - z_\alpha \sqrt{\operatorname{Var}(N_{mut})}}\right)$

Minhash Jaccard estimator

a.k.a. Mash distance

Two layers of randomness

- Mutation process
 - We can apply our Main Technique
- Sketching process
 - Our Main Technique does not apply
 - because sketch uses global information
 - We use a different approach

Theorem

• With limiting^{*} probability α , $j_{low} \leq \hat{J} \leq j_{high}$

Island definition

- An *island* is a maximal interval of mutated *k*-mers.
- Sequence can be partitioned into alternated islands and oceans.

K-mers starting at pos i

Number of islands is \$\sum_i B_i\$.
 \$B_i = 1\$ iff the k-mer at pos i is mutated and at at i + 1 is not.
 \$B_{L-1} = 1\$ is special end case.

Island definition

- An *island* is a maximal interval of mutated *k*-mers.
- Sequence can be partitioned into alternated islands and oceans.

• Number of islands is $\sum_i B_i$.

- \triangleright $B_i = 1$ iff the k-mer at pos i is mutated and at at i + 1 is not.
- ▶ B_{L-1} = 1 is special end case.

Island definition

- An *island* is a maximal interval of mutated *k*-mers.
- Sequence can be partitioned into alternated islands and oceans.

• Number of islands is $\sum_i B_i$.

- \triangleright $B_i = 1$ iff the k-mer at pos i is mutated and at at i + 1 is not.
- ▶ B_{L-1} = 1 is special end case.

Island definition

- An island is a maximal interval of mutated k-mers.
- Sequence can be partitioned into alternated islands and oceans.

• Number of islands is $\sum_i B_i$.

 \triangleright $B_i = 1$ iff the k-mer at pos i is mutated and at at i + 1 is not.

B_{L-1} = 1 is special end case.

Steps to derive hypothesis test for number of islands

- Derive $\Pr[B_i = 1, B_j = 1]$.
- Confirm that B_i and B_i are independent if they are far apart.
- Derive E(N_{island}) and Var(N_{island})
- Apply Main Technique Theorem

▶ $N_{island} \in E(N_{island}) \pm z_{\alpha} \sqrt{\operatorname{Var}(N_{island})}$ with limiting* probability α .

Summary of theoretical results

the expectation, variances, and intervals derived in the paper

Variable	Expectation	Variance	lpha interval
N _{mut}	Lq	$L(1-q)(q(2k+\frac{2}{r_1}-1)-2k)$	$Lq \pm z_{\alpha} \sqrt{\operatorname{Var}(N_{mut})}$
N _{island}	$Lr_1(1-q)$	$Lr_1(1-q)(1-r_1(1-q)(2k+1))$	$\mathrm{E}[N_{island}] \pm z_{\alpha} \sqrt{\mathrm{Var}(N_{island})}$
N _{ocean}	$Lr_1(1-q)$	$Lr_1(1-q)(1-r_1(1-q)(2k+1))$	$\mathrm{E}[N_{ocean}] \pm z_{\alpha} \sqrt{\mathrm{Var}(N_{ocean})}$
Jaccard	—		(see prev slide)
minhash Jaccard	_		(j _{low} , j _{high})
C _{ber} **	$\frac{L(1-q)(1+r_{1}(k-1))}{L+k-1}$	see paper	$\mathbb{E}[C_{ber}] \pm z_{\alpha} \sqrt{\operatorname{Var}(C_{ber})}$

** Coverage by exact regions [Miclotte et al., 2016]

*Only higher order terms are shown here, see paper for exact expressions.

N_{mut} confidence intervals

Simulation experiments

- Starting sequence with no dup k-mers
- 10,000 replicates for each cell.
- Report fraction of replicates for which the true r₁ falls into the predicted 95% CI.

L = 10, 000		r1		
ĺ	0.001	0.01	0.1	0.2
k = 100	0.95	0.95	_	_
51	0.95	0.95	0.96	
21	0.95	0.94	0.95	0.95

N_{mut} confidence intervals

Simulation experiments

- Starting sequence with no dup k-mers
- 10,000 replicates for each cell.
- Report fraction of replicates for which the true r₁ falls into the predicted 95% CI.

L = 10,000		r1		
	0.001	0.01	0.1	0.2
k = 100	0.95	0.95	_	_
51	0.95	0.95	0.96	
21	0.95	0.94	0.95	0.95

L = 1,000		'1		
	0.001	0.01	0.1	0.2
k = 100	0.95	0.96	_	_
51	0.94	0.95	0.94	—
21	0.93	0.95	0.95	0.95

N_{mut} confidence intervals

Simulation experiments

- Starting sequence with no dup k-mers
- 10,000 replicates for each cell.
- Report fraction of replicates for which the true r₁ falls into the predicted 95% CI.

L = 10,000		r1		
	0.001	0.01	0.1	0.2
k = 100	0.95	0.95	_	_
51	0.95	0.95	0.96	
21	0.95	0.94	0.95	0.95

L = 1,000		'1		
	0.001	0.01	0.1	0.2
k = 100	0.95	0.96	_	_
51	0.94	0.95	0.94	—
21	0.93	0.95	0.95	0.95

L = 100		″ 1		
	0.001	0.01	0.1	0.2
k = 100	0.91	1.00	_	_
51	0.91	1.00	1.00	—
21	0.91	0.96	1.00	1.00

N_{mut} confidence intervals

Simulation experiments

- Starting sequence with no dup k-mers
- 10,000 replicates for each cell.
- Report fraction of replicates for which the true r₁ falls into the predicted 95% CI.

Experiments with E. Coli

- Simulation done on E.Coli sequence
- CI calculator only observes
 - set of k-mers before (A)
 - set of k-mers before (B)
- CI calculator defines

$$L = (|A| + |B|)/2$$

 $\blacktriangleright N_{mut} = L - |A \cap B|$

L = 10,000		r1		
	0.001	0.01	0.1	0.2
k = 100	0.95	0.95	_	_
51	0.95	0.95	0.96	
21	0.95	0.94	0.95	0.95

L = 1,000		'1		
	0.001	0.01	0.1	0.2
k = 100	0.95	0.96	_	_
51	0.94	0.95	0.94	—
21	0.93	0.95	0.95	0.95

L = 100	″ 1				
	0.001	0.01	0.1	0.2	
k = 100	0.91	1.00	_		
51	0.91	1.00	1.00		
21	0.91	0.96	1.00	1.00	

E.Coli	r1			
r 1 =	0.001	0.01	0.1	0.2
k = 100	0.95	0.95		_
51	0.95	0.95	0.95	_
21	0.95	0.94	0.93	0.94

Mash distance (i.e. minhash Jaccard estimator)

▶ Table 1 in [Ondov et al., 2016] tested the point estimate on a range of values.

- ▶ *k* = 21
- ▶ *L* = 4,500,000
- Varying sketch size and r₁
- ▶ We replicate their experiments, but instead predict 95% CIs
 - 1,000 replicates for each cell

	$r_1(r_k)$			
Í	.05(.659)		.15(.967)	. 25(. 998)
sketch size = 100	0.97	1	1.00	1.00
1,000	0.96		0.97	1.00
10,000	0.95		0.96	0.96
100,000	0.95		0.95	0.96
1,000,000	0.94		0.95	0.96

Mash distance (i.e. minhash Jaccard estimator)

▶ Table 1 in [Ondov et al., 2016] tested the point estimate on a range of values.

- ▶ *k* = 21
- ▶ *L* = 4,500,000
- Varying sketch size and r₁
- ▶ We replicate their experiments, but instead predict 95% CIs
 - 1,000 replicates for each cell

I	$r_1(r_k)$		
Í	.05(.659)	.15(.967)	. 25(. 998)
sketch size = 100	0.97	1.00	1.00
1,000	0.96	0.97	1.00
10,000	0.95	0.96	0.96
100,000	0.95	0.95	0.96
1,000,000	0.94	0.95	0.96

We also simulated with E.coli.

	$r_1(r_k)$				
Ī	.05(.659)		.15(.967)		. 25(. 998)
sketch size = 100	0.97	1	1.00	1	1.00
1,000	0.97		0.96		1.00
10,000	0.96		0.96		0.97
100,000	0.94		0.95		0.96

Minimap2 [Li, 2018] and Jabba [Miclotte et al., 2016] read filtering

Minimap2

- Filters out alignment if r₁ estimate is far from error rate
- Estimates r₁ from the number of seeds that match a location

•
$$\hat{\epsilon} = \frac{1}{k} \log \frac{n}{m}$$

Using our model improves r₁ estimate.

Minimap2 [Li, 2018] and Jabba [Miclotte et al., 2016] read filtering

Minimap2

- Filters out alignment if r1 estimate is far from error rate
- Estimates r1 from the number of seeds that match a location
 - $\bullet \ \hat{\epsilon} = \frac{1}{k} \log \frac{n}{m}$

Using our model improves r₁ estimate.

Jabba

- Filters out alignment if coverage by exact regions (*C_{ber}*) "significantly deviates" from expectation.
- What is "significantly"?
- We can use a hypothesis test for C_{ber}

Conclusion

- Simple mutation model has been widely used but never studied in depth
- We show a technique for deriving hypothesis tests and confidence intervals
 - Exploit the fact that k-mer dependecies are local
- We derive these for a few natural random variables.
- Can we predict when the approximations stop working?

Variable	Expectation	Variance	lpha interval
N _{mut}	Lq	$L(1-q)(q(2k+\frac{2}{r_1}-1)-2k)$	$Lq \pm z_{lpha} \sqrt{\operatorname{Var}(N_{mut})}$
N _{island}	$Lr_1(1-q)$	$Lr_1(1-q)(1-r_1(1-q)(2k+1))$	$E[N_{island}] \pm z_{\alpha} \sqrt{Var(N_{island})}$
Nocean	$Lr_1(1-q)$	$Lr_1(1-q)(1-r_1(1-q)(2k+1))$	$E[N_{ocean}] \pm z_{\alpha} \sqrt{Var(N_{ocean})}$
Jaccard	—		(see prev slide)
minhash Jaccard	—		(j _{low} , j _{high})
C _{ber} **	$\frac{L(1-q)(1+r_{1}(k-1))}{L+k-1}$	see paper	$E[C_{ber}] \pm z_{\alpha} \sqrt{Var(C_{ber})}$

E.g. in Binomial, this is when np(1-p) is low

References |

Hoeffding, W., Robbins, H., et al. (1948).

The central limit theorem for dependent random variables. Duke Mathematical Journal, 15(3):773-780.

Li, H. (2018).

Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100.

Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y., Audenaert, P., and Fostier, J. (2016).

Jabba: hybrid error correction for long sequencing reads. Algorithms for Molecular Biology, 11(1):1–12.

Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., and Phillippy,

A. M. (2016). Mash: fast genome and metagenome distance estimation using minhash. Genome biology, 17(1):132.

Ross, N. (2011).

Fundamentals of Stein's method. Probability Surveys, 8:210–293.