The statistics of k-mers from a sequence undergoing a simple mutation process without spurious matches

Antonio Blanca, Robert S. Harris, David Koslicki, Paul Medvedev

Pennsylvania State University
Data structures in bionformatics workshop (DSB)
Feb 11-12, 2021

This paper will appear in RECOMB 2021 and is available on bioRxiv.

Talk outline

1. Introduce model
2. Motivating applications
3. Number of mutated k-mers
3.1 expectation
3.2 variance
3.3 hypothesis test
3.4 confidence interval
4. Other random variables
5. Experimental results

Simple model

Generative model

- Start with a genome A
- Mutate every nucleotide with probability r_{1}

Nucleotide sequence

- Get a new genome B
- Assume that all k-mers are unique.

Simple model

Generative model

- Start with a genome A
- Mutate every nucleotide with probability r_{1}
- Get a new genome B

Nucleotide sequence

K-mers starting at pos i

- Assume that all k-mers are unique.

What do we observe?

- not the nucleotide sequences
- $N_{m u t}$
- Number of mutated k-mers

Simple model

Generative model

- Start with a genome A
- Mutate every nucleotide with probability r_{1}
- Get a new genome B
- Assume that all k-mers are unique.

What do we observe?

- not the nucleotide sequences
- $N_{m u t}$
- Number of mutated k-mers
- Jaccard
$-J(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{L-N_{\text {mut }}}{L+N_{\text {mut }}}$

Nucleotide sequence

K-mers starting at pos i

Simple model

Generative model

- Start with a genome A
- Mutate every nucleotide with probability r_{1}
- Get a new genome B
- Assume that all k-mers are unique.

What do we observe?

- not the nucleotide sequences
- $N_{m u t}$
- Number of mutated k-mers
- Jaccard
- $J(A, B)=\frac{|A \cap B|}{|A \cup B|}=\frac{L-N_{\text {mut }}}{L+N_{\text {mut }}}$

- Minhash Jaccard
- $A_{s k} \triangleq$ minhash sketch of A
- $B_{s k} \triangleq$ minhash sketch of B
- $\hat{\jmath}=J\left(A_{s k}, B_{s k}\right)$

Motivating applications

Mash distance [Ondov et al., 2016]

- Take two evolutionary related sequences
- Observe $\hat{\jmath}$ from two genomes
- Assume that genomes evolved under the simple model
- Estimate r_{1} from $\hat{\jmath}$.
- What about a confidence interval for r_{1} ?
- Given that the two sequences evolved under this simple model, and we observe $N_{\text {mut }}$, what is an interval that will contain r_{1} with 95% probability?

Motivating applications

Mash distance [Ondov et al., 2016]

- Take two evolutionary related sequences
- Observe $\hat{\jmath}$ from two genomes
- Assume that genomes evolved under the simple model
- Estimate r_{1} from \hat{J}.
- What about a confidence interval for r_{1} ?
- Given that the two sequences evolved under this simple model, and we observe $N_{\text {mut }}$, what is an interval that will contain r_{1} with 95% probability?
Alignments of reads to de Bruijn graph (minimap2, jabba, lorma)
- A read is generated from a genome location
- sequencing error rate r_{1}.
- Is a putative genome location the one that generated the read?
- We observe $N_{m u t}$
- Want to accept/reject this alignment, with 95% chance of being correct.
- A hypothesis test with significance level 95% for $N_{m u t}$
- Given r_{1} what is the range into which $N_{m u t}$ would fall with 95% probability?

Distribution of $N_{m u t}$

Expectation
Expectation is easy.

- Let X_{i} be the indicator r.v. if k-mer starting at position i is mutated.
- Let $\mathrm{E}\left[X_{i}\right] \triangleq r_{k}=\left(1-\left(1-r_{1}\right)^{k}\right)$ be the probability that a k-mer is mutated.
- $N_{m u t}=\sum X_{i}$
- $\mathrm{E}\left[N_{m u t}\right]=\mathrm{E}\left[\sum X_{i}\right]=L \mathrm{E}\left[X_{i}\right]=L r_{k}$.

Nucleotide sequence

K-mers starting at pos i

Distribution of $N_{m u t}$

Expectation
Expectation is easy.

- Let X_{i} be the indicator r.v. if k-mer starting at position i is mutated.
- Let $\mathrm{E}\left[X_{i}\right] \triangleq r_{k}=\left(1-\left(1-r_{1}\right)^{k}\right)$ be the probability that a k-mer is mutated.
- $N_{m u t}=\sum X_{i}$
- $\mathrm{E}\left[N_{m u t}\right]=\mathrm{E}\left[\sum X_{i}\right]=L \mathrm{E}\left[X_{i}\right]=L r_{k}$.

K-mers starting at pos i
Is $N_{m u t}$ a binomial?
- Binomial is sum of independent Bernoulli trials
- But nearby X_{i} s are dependent.

Dependency lemma and variance

Lemma

- If $j-i \geq k$, then X_{i} and X_{j} are independent
- If $j-i<k, \operatorname{Pr}\left[X_{i}=1, X_{j}=1\right]=2 r_{k}-1+\left(1-r_{1}\right)^{k+j-i}$

Dependency lemma and variance

Lemma

- If $j-i \geq k$, then X_{i} and X_{j} are independent
- If $j-i<k, \operatorname{Pr}\left[X_{i}=1, X_{j}=1\right]=2 r_{k}-1+\left(1-r_{1}\right)^{k+j-i}$

Proof

$$
\begin{equation*}
\left(1-r_{1}\right)^{j-i}\left(1-\left(1-r_{1}\right)^{k-j+i}\right) \tag{1}
\end{equation*}
$$

N/A
0

Dependency lemma and variance

Lemma

- If $j-i \geq k$, then X_{i} and X_{j} are independent
- If $j-i<k, \operatorname{Pr}\left[X_{i}=1, X_{j}=1\right]=2 r_{k}-1+\left(1-r_{1}\right)^{k+j-i}$

Proof

$$
\begin{equation*}
\left(1-r_{1}\right)^{j-i}\left(1-\left(1-r_{1}\right)^{k-j+i}\right) \tag{1}
\end{equation*}
$$

N/A
0

\qquad

Lemma
$-\operatorname{Var}\left[N_{m u t}\right]=L\left(1-r_{k}\right)\left(r_{k}\left(2 k+\frac{2}{r_{1}}-1\right)-2 k\right)+o(L)$

M-dependent variables and Main Technique Theorem

A sequence of L random variables X_{0}, \ldots, X_{L-1} is said to be \mathbf{m}-dependent if there exists a bounded m such that if $j-i>m$, then the two sets $\left\{X_{0}, \ldots, X_{i}\right\}$ and $\left\{X_{j}, \ldots, X_{L-1}\right\}$ are independent [Hoeffding et al., 1948].

- $N_{m u t}$ is sum of \mathbf{m}-dependent variables, with $m=k-1$.
- Sum of m-dependent variables is asymptotically normal [Hoeffding et al., 1948].
- Stein's method also gives us the rate of convergence [Ross, 2011].
- We can derive hypothesis test using same strategy as with Binomial
- Main Technique Theorem
- Let X be a sum of m-dependent Bernoulli random variables.
- Then, $X \in \mathrm{E}[X] \pm z_{\alpha} \sqrt{\operatorname{Var}(X)}$ with limiting* probability α,
- z_{α} is value of inverse Normal CDF at $(1-\alpha) / 2$

M-dependent variables and Main Technique Theorem

A sequence of L random variables X_{0}, \ldots, X_{L-1} is said to be \mathbf{m}-dependent if there exists a bounded m such that if $j-i>m$, then the two sets $\left\{X_{0}, \ldots, X_{i}\right\}$ and $\left\{X_{j}, \ldots, X_{L-1}\right\}$ are independent [Hoeffding et al., 1948].

- $N_{m u t}$ is sum of \mathbf{m}-dependent variables, with $m=k-1$.
- Sum of m-dependent variables is asymptotically normal [Hoeffding et al., 1948].
- Stein's method also gives us the rate of convergence [Ross, 2011].
- We can derive hypothesis test using same strategy as with Binomial
- Main Technique Theorem
- Let X be a sum of m-dependent Bernoulli random variables.
- Then, $X \in \mathrm{E}[X] \pm z_{\alpha} \sqrt{\operatorname{Var}(X)}$ with limiting* probability α,
- z_{α} is value of inverse Normal CDF at $(1-\alpha) / 2$

M-dependent variables and Main Technique Theorem

A sequence of L random variables X_{0}, \ldots, X_{L-1} is said to be \mathbf{m}-dependent if there exists a bounded m such that if $j-i>m$, then the two sets $\left\{X_{0}, \ldots, X_{i}\right\}$ and $\left\{X_{j}, \ldots, X_{L-1}\right\}$ are independent [Hoeffding et al., 1948].

- $N_{m u t}$ is sum of \mathbf{m}-dependent variables, with $m=k-1$.
- Sum of m-dependent variables is asymptotically normal [Hoeffding et al., 1948].
- Stein's method also gives us the rate of convergence [Ross, 2011].
- We can derive hypothesis test using same strategy as with Binomial
- Main Technique Theorem
- Let X be a sum of m-dependent Bernoulli random variables.
- Then, $X \in \mathrm{E}[X] \pm z_{\alpha} \sqrt{\operatorname{Var}(X)}$ with limiting* probability α,
- z_{α} is value of inverse Normal CDF at $(1-\alpha) / 2$

$N_{m u t}$ and Jaccard

Hypothesis tests and confidence intervals
Corollary of Main Technique Theorem
$-N_{m u t} \in L r_{k} \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{m u t}\right)}$ with limiting* probability α, *assuming r_{1} and k are independent of L

To compute Cl for r_{1},

- Numerically find the range of r_{1} for which $N_{m u t}$ is in the test range.

Suppose we observe $T=f\left(N_{m u t}\right)$
$-f(x)$ is a monotone function

- e.g. Jaccard $=\frac{L-N_{\text {mut }}}{L+N_{m u t}}$

Corollaries

- With limiting* probability α,
- $f\left(N_{m u t}\right) \in f\left(L r_{k} \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{m u t}\right)}\right)$
$>J \in\left(\frac{L-L r_{k}-z_{\alpha} \sqrt{\operatorname{Var}\left(N_{m u t}\right)}}{L+L r_{k}+z_{\alpha} \sqrt{\operatorname{Var}\left(N_{m u t}\right)}}, \frac{L-L r_{k}+z_{\alpha} \sqrt{\operatorname{Var}\left(N_{m u t}\right)}}{L+L r_{k}-z_{\alpha} \sqrt{\operatorname{Var}\left(N_{m u t}\right)}}\right)$

Minhash Jaccard estimator

a.k.a. Mash distance

Two layers of randomness

- Mutation process
- We can apply our Main Technique
- Sketching process
- Our Main Technique does not apply
- ... because sketch uses global information
- We use a different approach

Theorem

- With limiting* probability $\alpha, j_{\text {low }} \leq \hat{\jmath} \leq j_{h i g h}$

Islands and oceans

Island definition

- An island is a maximal interval of mutated k-mers.
- Sequence can be partitioned into alternated islands and oceans.
K-mers starting at pos i
- Number of islands is $\sum_{i} B_{i}$.
- $B_{i}=1$ iff the k-mer at pos i is mutated and at at $i+1$ is not.
- $B_{L-1}=1$ is special end case.

Islands and oceans

Island definition

- An island is a maximal interval of mutated k-mers.
- Sequence can be partitioned into alternated islands and oceans.
K-mers starting at posi $00 \mathrm{COOODOQ000000000}$ island ocean
- Number of islands is $\sum_{i} B_{i}$.
- $B_{i}=1$ iff the k-mer at pos i is mutated and at at $i+1$ is not.
- $B_{L-1}=1$ is special end case.

Islands and oceans

Island definition

- An island is a maximal interval of mutated k-mers.
- Sequence can be partitioned into alternated islands and oceans.

- Number of islands is $\sum_{i} B_{i}$.
- $B_{i}=1$ iff the k-mer at pos i is mutated and at at $i+1$ is not.
- $B_{L-1}=1$ is special end case.

Islands and oceans

Island definition

- An island is a maximal interval of mutated k-mers.
- Sequence can be partitioned into alternated islands and oceans.
K-mers starting at pos i

- Number of islands is $\sum_{i} B_{i}$.
- $B_{i}=1$ iff the k-mer at pos i is mutated and at at $i+1$ is not.
- $B_{L-1}=1$ is special end case.

Steps to derive hypothesis test for number of islands

- Derive $\operatorname{Pr}\left[B_{i}=1, B_{j}=1\right]$.
- Confirm that B_{i} and B_{j} are independent if they are far apart.
- Derive $\mathrm{E}\left(N_{\text {island }}\right)$ and $\operatorname{Var}\left(N_{\text {island }}\right)$
- Apply Main Technique Theorem
- $N_{\text {island }} \in \mathrm{E}\left(N_{\text {island }}\right) \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{\text {island }}\right)}$ with limiting* probability α.

Summary of theoretical results

the expectation, variances, and intervals derived in the paper

Variable	Expectation	Variance	α interval
$N_{\text {mut }}$	$L q$	$L(\mathbf{1}-q)\left(q\left(2 k+\frac{\mathbf{2}}{r_{\mathbf{1}}}-\mathbf{1}\right)-2 k\right)$	$L q \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{\text {mut }}\right)}$
$N_{\text {island }}$	$L r_{\mathbf{1}}(\mathbf{1}-q)$	$L r_{\mathbf{1}}(\mathbf{1}-q)\left(\mathbf{1}-r_{\mathbf{1}}(\mathbf{1}-q)(2 k+\mathbf{1})\right)$	$\mathrm{E}\left[N_{\text {island }}\right] \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{\text {island }}\right)}$
$N_{\text {ocean }}$	$L r_{\mathbf{1}}(\mathbf{1}-q)$	$L r_{\mathbf{1}}(\mathbf{1}-q)\left(\mathbf{1}-r_{\mathbf{1}}(\mathbf{1}-q)(2 k+\mathbf{1})\right)$	$\mathrm{E}\left[N_{\text {ocean }}\right] \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{\text {ocean }}\right)}$
Jaccard	-	-	$($ see prev slide)
minhash Jaccard	-	(jlow, $\left.j_{h i g h}\right)$	
$C_{\text {ber }}^{* *}$	$\frac{L(\mathbf{1}-q)\left(\mathbf{1}+r_{\mathbf{1}}(k-\mathbf{1})\right)}{L+k-\mathbf{1}}$	see paper	$\mathrm{E}\left[C_{\text {ber }}\right] \pm z_{\alpha} \sqrt{\operatorname{Var}\left(C_{b e r}\right)}$

** Coverage by exact regions [Miclotte et al., 2016]
*Only higher order terms are shown here, see paper for exact expressions.

Experimental results

$N_{\text {mut }}$ confidence intervals
Simulation experiments

- Starting sequence with no dup k-mers
- 10,000 replicates for each cell.
- Report fraction of replicates for which the true r_{1} falls into the predicted $95 \% \mathrm{Cl}$.

$L=10,000$	r_{1}			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.95	0.95	-	-
$\mathbf{5 1}$	0.95	0.95	0.96	-
$\mathbf{2 1}$	0.95	0.94	0.95	0.95

Experimental results

$N_{\text {mut }}$ confidence intervals
Simulation experiments

- Starting sequence with no dup k-mers
- 10,000 replicates for each cell.
- Report fraction of replicates for which the true r_{1} falls into the predicted $95 \% \mathrm{Cl}$.

$L=\mathbf{1 0}, \mathbf{0 0 0}$	$r_{\mathbf{1}}$			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.95	0.95	-	-
$\mathbf{5 1}$	0.95	0.95	0.96	-
$\mathbf{2 1}$	0.95	0.94	0.95	0.95

$L=\mathbf{1}, 000$	$r_{\mathbf{1}}$			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.95	0.96	-	-
$\mathbf{5 1}$	0.94	0.95	0.94	-
$\mathbf{2 1}$	0.93	0.95	0.95	0.95

Experimental results

$N_{\text {mut }}$ confidence intervals

Simulation experiments

- Starting sequence with no dup k-mers
- 10,000 replicates for each cell.
- Report fraction of replicates for which the true r_{1} falls into the predicted $95 \% \mathrm{Cl}$.

$L=\mathbf{1 0}, 000$	$r_{\mathbf{1}}$			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.95	0.95	-	-
$\mathbf{5 1}$	0.95	0.95	0.96	-
$\mathbf{2 1}$	0.95	0.94	0.95	0.95

$L=\mathbf{1}, 000$	$r_{\mathbf{1}}$			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.95	0.96	-	-
$\mathbf{5 1}$	0.94	0.95	0.94	-
$\mathbf{2 1}$	0.93	0.95	0.95	0.95

$L=100$	$r_{\mathbf{1}}$			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.91	$\mathbf{1 . 0 0}$	-	-
$\mathbf{5 1}$	0.91	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$	-
$\mathbf{2 1}$	0.91	0.96	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$

Experimental results

$N_{\text {mut }}$ confidence intervals

Simulation experiments

- Starting sequence with no dup k-mers
- 10,000 replicates for each cell.
- Report fraction of replicates for which the true r_{1} falls into the predicted $95 \% \mathrm{Cl}$.

Experiments with E.Coli

- Simulation done on E.Coli sequence
- CI calculator only observes
- set of k-mers before (A)
- set of k-mers before (B)
- Cl calculator defines
- $L=(|A|+|B|) / 2$.
- $N_{\text {mut }}=L-|A \cap B|$

$L=\mathbf{1 0}, \mathbf{0 0 0}$	$r_{\mathbf{1}}$			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.95	0.95	-	-
$\mathbf{5 1}$	0.95	0.95	0.96	-
$\mathbf{2 1}$	0.95	0.94	0.95	0.95

$L=\mathbf{1}, 000$	$r_{\mathbf{1}}$			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.95	0.96	-	-
$\mathbf{5 1}$	0.94	0.95	0.94	-
$\mathbf{2 1}$	0.93	0.95	0.95	0.95

$L=100$	$r_{\mathbf{1}}$			
	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$
$k=\mathbf{1 0 0}$	0.91	$\mathbf{1 . 0 0}$	-	-
$\mathbf{5 1}$	0.91	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$	-
$\mathbf{2 1}$	0.91	0.96	1.00	$\mathbf{1 . 0 0}$

E.Coli		$r_{\mathbf{1}}$			
r	$r_{\mathbf{1}}=$	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 1}$	
$k=\mathbf{0 . 2}$					
$\mathbf{5 1}$	0.95	0.95	-	-	
$\mathbf{2 1}$	0.95	0.95	0.95	-	
			0.95	0.94	

Experimental results

Mash distance (i.e. minhash Jaccard estimator)

- Table 1 in [Ondov et al., 2016] tested the point estimate on a range of values.
- $k=21$
- $L=4,500,000$
- Varying sketch size and r_{1}
- We replicate their experiments, but instead predict 95% Cls
- 1,000 replicates for each cell

	$r_{\mathbf{1}}\left(r_{k}\right)$		
	. $\mathbf{0 5 (. 6 5 9)}$. $\mathbf{1 5 (. 9 6 7)}$. $\mathbf{2 5 (. 9 9 8)}$
sketch size $=\mathbf{1 0 0}$	0.97	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$
$\mathbf{1 , 0 0 0}$	0.96	0.97	$\mathbf{1 . 0 0}$
$\mathbf{1 0 , 0 0 0}$	0.95	0.96	0.96
$\mathbf{1 0 0 , 0 0 0}$	0.95	0.95	0.96
$\mathbf{1 , 0 0 0}, \mathbf{0 0 0}$	0.94	0.95	0.96

Experimental results

Mash distance (i.e. minhash Jaccard estimator)

- Table 1 in [Ondov et al., 2016] tested the point estimate on a range of values.
- $k=21$
- $L=4,500,000$
- Varying sketch size and r_{1}
- We replicate their experiments, but instead predict 95% Cls
- 1,000 replicates for each cell

	$r_{\mathbf{1}}\left(r_{k}\right)$		
	. $\mathbf{0 5}(.659)$. $\mathbf{1 5}(.967)$. $\mathbf{2 5}(.998)$
sketch size $\mathbf{= 1 0 0}$	0.97	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$
$\mathbf{1 , 0 0 0}$	0.96	0.97	$\mathbf{1 . 0 0}$
$\mathbf{1 0 , 0 0 0}$	0.95	0.96	0.96
$\mathbf{1 0 0 , 0 0 0}$	0.95	0.95	0.96
$\mathbf{1 , 0 0 0 , 0 0 0}$	0.94	0.95	0.96

- We also simulated with E.coli.

	$r_{\mathbf{1}}\left(r_{k}\right)$		
	. $\mathbf{0 5}(.659)$. $\mathbf{1 5}(.967)$. $\mathbf{2 5}(.998)$
$\boldsymbol{s k e t c h}$ size $=\mathbf{1 0 0}$	0.97	$\mathbf{1 . 0 0}$	$\mathbf{1 . 0 0}$
$\mathbf{1 , 0 0 0}$	0.97	0.96	$\mathbf{1 . 0 0}$
$\mathbf{1 0 , 0 0 0}$	0.96	0.96	0.97
$\mathbf{1 0 0 , 0 0 0}$	0.94	0.95	0.96

Experimental results

Minimap2 [Li, 2018] and Jabba [Miclotte et al., 2016] read filtering

Minimap2

- Filters out alignment if r_{1} estimate is far from error rate
- Estimates r_{1} from the number of seeds that match a location
- $\hat{\epsilon}=\frac{1}{k} \log \frac{n}{m}$
- Using our model improves r_{1} estimate.

Experimental results

Minimap2 [Li, 2018] and Jabba [Miclotte et al., 2016] read filtering

Minimap2

- Filters out alignment if r_{1} estimate is far from error rate
- Estimates r_{1} from the number of seeds that match a location
- $\hat{\epsilon}=\frac{1}{k} \log \frac{n}{m}$
- Using our model improves r_{1} estimate.

Jabba

- Filters out alignment if coverage by exact regions ($C_{b e r}$) "significantly deviates" from expectation.
- What is "significantly"?
- We can use a hypothesis test for $C_{b e r}$

Conclusion

- Simple mutation model has been widely used but never studied in depth
- We show a technique for deriving hypothesis tests and confidence intervals
- Exploit the fact that k-mer dependecies are local
- We derive these for a few natural random variables.
- Can we predict when the approximations stop working?
- E.g. in Binomial, this is when $n p(1-p)$ is low

Variable	Expectation	Variance	α interval
$N_{\text {mut }}$	$L q$	$L(\mathbf{1}-q)\left(q\left(2 k+\frac{\mathbf{2}}{r_{\mathbf{1}}}-\mathbf{1}\right)-2 k\right)$	$L q \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{\text {mut }}\right)}$
$N_{\text {island }}$	$L r_{\mathbf{1}}(\mathbf{1}-q)$	$L r_{\mathbf{1}}(\mathbf{1}-q)\left(\mathbf{1}-r_{\mathbf{1}}(\mathbf{1}-q)(2 k+\mathbf{1})\right)$	$\mathrm{E}\left[N_{\text {island }}\right] \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{\text {island }}\right)}$
$N_{\text {ocean }}$	$L r_{\mathbf{1}}(\mathbf{1}-q)$	$L r_{\mathbf{1}}(\mathbf{1}-q)\left(\mathbf{1}-r_{\mathbf{1}}(\mathbf{1}-q)(2 k+\mathbf{1})\right)$	$\mathrm{E}\left[N_{\text {ocean }}\right] \pm z_{\alpha} \sqrt{\operatorname{Var}\left(N_{\text {ocean }}\right)}$
Jaccard	-	-	(see prev slide)
minhash Jaccard	-	$\left(j_{\text {low }}, j_{h i g h}\right)$	
$C_{\text {ber }}^{* *}$	$\frac{L(\mathbf{1}-q)\left(\mathbf{1}+r_{\mathbf{1}}(k-\mathbf{1})\right)}{L+k-\mathbf{1}}$	see paper	$\mathrm{E}\left[C_{b e r}\right] \pm z_{\alpha} \sqrt{\operatorname{Var}\left(C_{b e r}\right)}$

References I

Hoeffding, W., Robbins, H., et al. (1948).
The central limit theorem for dependent random variables.
Duke Mathematical Journal, 15(3):773-780.
Li, H. (2018).
Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics, 34(18):3094-3100.

Miclotte, G., Heydari, M., Demeester, P., Rombauts, S., Van de Peer, Y., Audenaert, P., and Fostier, J. (2016).

Jabba: hybrid error correction for long sequencing reads.
Algorithms for Molecular Biology, 11(1):1-12.
Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S., and Phillippy,
A. M. (2016).

Mash: fast genome and metagenome distance estimation using minhash.
Genome biology, 17(1):132.
Ross, N. (2011).
Fundamentals of Stein's method.
Probability Surveys, 8:210-293.

