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Sketching in bioinformatics

I A sketch is a much smaller representation of a dataset.

I Allows downstream algorithms
I to be faster
I to use less memory
I to tackle bigger datasets

I Potential to create accuracy issues

Sketching techniques in bioinformatics

the hyperloglog sketch [Flajolet et al., 2007]
the modulo sketch [Broder, 1997, Schleimer et al., 2003]
minhash with optimal densi�cation [Shrivastava, 2017, Zhao, 2019]
order minhash [Marçais et al., 2019]
count minsketch [Cormode and Muthukrishnan, 2004]

Used for sequence comparison

to compute genomic distances [Baker and Langmead, 2019]
to search sequence databases [Pierce et al., 2019]
to estimate edit distance [Marçais et al., 2019]
for k-mer counting [Crusoe et al., 2015]



The minimizer sketch of a sequence
[Schleimer et al., 2003, Roberts et al., 2004]

De�nition

I Given a sequence A, a k ≥ 2, and a window size w ≥ 2.

I A hash function chosen uniformly at random.

I For every w consecutive k-mers, the minimizer is the k-mer with the smallest
hash value.

I The minimizer sketch of A is the set of all minimizers.

Example: A =acggat, k = 2, w = 2

Used in

I sequence alignment
I minimap

I sequence mapping
I mashmap

I seed generation in assembly
I peregrine

I transcriptome clustering and error correction
I isONclust, isONcorrect

I etc. . .
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The minimizer Jaccard estimator
[Jain et al., 2017, Jain et al., 2018a, Jain et al., 2018b]

Jaccard similarity

I percent of k-mers that are shared

I Let S be the number of k-mers that appear in both sequences.

I Let U be the number of k-mers that appear in at least one of the sequences.

I J(A,B) = S
U

The minimizer Jaccard estimator Ĵ

I Ĵ(A,B) = J(Asketch,Bsketch)

I The Jaccard of the minimizer sketches

Mapper application (mashmap)

I Used to reject putative mappings

Main Question

I Is Ĵ an accurate estimator of Jaccard?
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Measuring accuracy
Bias and consistency

Bias
I An estimator Ĵ is unbiased if E[Ĵ] = J

Consistency
I An estimator Ĵ is consistent if limE[Ĵ] = J

For example, the minhash Jaccard estimator is unbiased [Broder, 1997]

Evidence of bias in mashmap

divergence (%)

true 10.0 5.0 1.0

mashmap 11.1 5.9 1.4

Why would the minimizer Jaccard estimator be biased?
I Jaccard does not depend on the order of k-mers but the estimator does.

Example: one of the sequences is a k-mer permutation of the other.
I Jaccard is one
I Jaccard estimator depends on randomness so has a distribution
I Jaccard estimator can never be ≥ 1, so expectation is < 1



More intuition behind bias

What about cases where the order does not change?

Question: Why should Ĵ be UNbiased?

I Higher J ⇐⇒ More shared k-mers ⇐⇒ more shared minimizers ⇐⇒ Higher Ĵ

I But then lots of functions exist that have this property

I On the other hand, Ĵ and J have the same structure (a ratio)

I But E[Ŝ] is not proportional to S .
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Theoretical results
General sequence pairs

I It is enough to consider the simpler case when A and B are duplicate-free.

I Theorem 1
I For all pairs of duplicate-free sequences,

B − ε ≤ E[Ĵ]− J ≤ B + ε.

where
I B is a function of the matching graph and
I 0 ≤ ε ≤ 100w2

3√
L

I Theorem 2
I Assume the two sequences are padded.
I If 0 < J < 1, then B is strictly negative.
I If J = 0, then B = 0.

I In other words:
I Minimizer Jaccard estimator is biased.
I The bias can be derived from the matching graph

I i.e. layout of the shared k-mers



Theoretical results
Examples of concrete families of sequence pairs

Theorem 3: sparsely matched sequences

I Assume:
I distance between any two shared k-mers is ≥ 2w − 1.
I two sequences are padded.

I Then, B(A,B;w) ≤ −J(A,B) 3w
2−3w

8w2−2 .

I In other words, E [Ĵ] is at most 63% of J.

Theorem 4: densely matched sequences

I Assume B is generated from A by mutating every jth nucleotide, for j > w + 2k.

I B(A,B;w) = 2`(`j+k)h(w)
(`(j+k)+2k−`h(w))(`(j+k)+2k)

,

I where ` = L−k
j
, h(w) = (w+1)(1−2(H2w−Hw ))

2
and Hn =

∑n
i=1

1
i
.

I For k = 15, w = 10, L u 10, 000, j = 43,
I E [Ĵ] is about 10% smaller than J.



Extent of empirical bias on real sequences

I Related sequence pairs
I Take arbitrary substring of E.coli with L = 10, 000.
I Mutate every position with probability r1 ∈ {.001, .005, .01, .05, .1}.
I Set k = 16 and w ∈ {20, 200}.

I Unrelated sequence pairs
I Given a target Jaccard j and �xed k,
I . . . generate uniformly random string
I . . . long enough to have the expected Jaccard of j .
I w = 20



E�ect of bias on mashmap divergence esimates

divergence (%)

true 10.0 5.0 1.0

mashmap 11.1 5.9 1.4
mashmap �Poisson-adjusted� 10.5 5.7 1.4
mashmap adjusted + unbiased 10.0 5.0 1.0

Experiment

I Simulate a read from E.coli with substitutions to achieve the given divergence

I Map reads to E.coli with mashmap

I mashmap estimates sequence divergence from Jaccard estimator
I Mash formula

Table

I median divergence reported by mashmap, over 100 trials.

I �Poisson-adjusted�
I Correction to Mash formula

I �unbiased�
I Replace Ĵ with J



Conclusion

Summary

I The minimizer Jaccard estimator su�ers from bias and inconsistency

I On unrelated sequences, the bias can be drastic

I On pairs of sequences related via mutations the bias is less but is substantial

I The bias cannot be removed by changing the window size

I Bias causes inaccurate estimates of divergence during mapping

Where does this leave the minimizer Jaccard estimator?

I Makes sure you empirically test the bias for your application before using it.

I Make sure that the bias is acceptable in your application
I Read mapping?

I probably �ne
I Fine grained phylogeny reconstructions?

I probably not

I Or, use a consistent sketch
I FracMinHash [Hera et al., 2022, Pierce et al., 2019]
I mod hash [Broder, 1997]
I universe minimizer [Ekim et al., 2021]
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Extent of empirical bias during the mapping process

Simulate (roughly) the behavior of mashmap.

I A is a 1,000 long arbitrary substring of E.coli.

I Compare against all 1,000-long mapping locations.

I Each point represents A against a putative mapping location B.

I We use default params of mashmap (k = 16 and w = 200).



E�ect of window size on bias

Pair of sequences related via simple mutation process

I Mutation rate of 0.1

I L = 10, 000

I k = 16

I w ∈ {20, 100, 200, . . . , 1000}
I 50 mutation replicates.



Empirical accuracy of our B formula

I For the previous examples,
I the empirical error is roughly one/two orders of magnitude smaller than bias

I The error decreases with L
I The average J, over the mutation replicates, is between .101 and .106.
I The average empirical bias ranges between −0.023 and −0.027.

I The error increases with window size
I The average J is .104.



How we prove bias
high level teaser only

Need to derive E[Ĵ].

I Let Ŝ be the number of minimizers shared between the two sequences.

I Let Û be the number of minimizers in at least one of the sequences.

I Ĵ = Ŝ

Û

Step 1: Dealing with the ratio

I i.e. E[ Ŝ
Û
] 6= E[Ŝ]

E[Û]
.

I Lemma:
∣∣∣E [ Ŝ

Û

]
− E[Ŝ]

E[Û]

∣∣∣ ≤ 13w2

3√
L
.

Step 2: Deriving E [Û]

I Lemma: E[Û] = 2
(

2L
w+1

)
− E[Ŝ].

I follows from [Schleimer et al., 2003, Roberts et al., 2004].

Step 3: Deriving E[Ŝ]

I See following slides for intuition



Deriving E[Ŝ ]
Reducing to sum of charging indicator variables

I Let p be a position of a minimizer.
I Take the leftmost window in which p is a minimizer.
I Let i be the position right before that.
I We say that p charges i [Schleimer et al., 2003, Marçais et al., 2017].
I We know that ai+1, . . . , ai+w , except for ap , are more than ap

I What about ai?
I If i > p − w , then ai < ap .
I If i = p − w , then ai can be

anything.

I Let XA
i,p indicate if p charged i in sequence A.

I Let XB
j,q indicate if q charged j in sequence B.

E[Ŝ] =
∑
i

∑
j

∑
p,q
s.t.

Ap=Bq

Pr[XA
i,p = 1,XB

j,q = 1]

=
∑
i

∑
j

∑
p,q
s.t.

Ap=Bq

∫ 1

0

Pr[XA
i,p = 1,XB

j,q = 1 | ap = bq = x] dx



Deriving E[Ŝ ]
Computing Pr[XA

i,p = 1, XB
j,q = 1 | ap = bq = x]

I Example for intuition
I w = 4

I Left example
I Two values that need to be less than x
I Five values that need to be more than x
I Prob that both charging indicators are one, conditioned on x , is

I x2(1− x)5

I Right example
I One value that needs to be less than x
I Four values that need to be more than x
I Prob that both charging indicators are one, conditioned on x , is

I x(1− x)4



Deriving E[Ŝ ]

I Pr[XA
i,p = 1,XB

j,q = 1 | ap = bq = x] = xα(1− x)β

I α and β depend on the layout of the shared k-mers in Ai , . . . ,Ai+w and
Bj , . . . ,Bj+w .

I What matters?
I How many k-mers are shared between {Ai+1, . . . ,Ai+w} and
{Bj+1, . . . ,Bj+w}?

I Does Ai = Bj?
I Is Ai ∈ {Bj+1, . . . ,Bj+w}?
I Is Bj ∈ {Ai+1, . . . ,Ai+w}?
I Does Ai+w = Bj+w?
I Is Ai+w ∈ {Bj+1, . . . ,Bj+w}?
I Is Bj+w ∈ {Ai+1, . . . ,Ai+w}?

I The answer to these questions de�ne a con�guration

I For each con�guration, its number is the number of index pairs i , j that are in
that con�guration.

I E[Ŝ] is a linear of combination of con�guration numbers,

I weighted by functions of the form
∫ 1
0 xα(1− x)β dx .

I We get a closed form solution to

I B , E[Ĵ]− J u E[Ŝ]
4L

w+1−E[Ŝ]
− J.


