
TwoPaCo: An efficient algorithm to build the compacted de Bruijn graph
from many complete genomes

Ilia Minkin1, Son Pham2, Paul Medvedev1,3,4

1Department of Computer Science and Engineering, The Pennsylvania State University, USA; 2Salk Institute for Biological Studies, USA;
3Department of Biochemistry and Molecular Biology, The Pennsylvania State University, USA;

4Genomic Sciences Institute of the Huck, The Pennsylvania State University, USA

GRAPH REPRESENTATION OF GENOMES

As we get more and more complete genomes, the question of their representation
gets more important. Unlike a linear representation, graphs can capture homology
both within and between genomes. This property makes them useful for compar-
ative genomics applications. An example of graph representation of two genomes
is shown below. Red and blue lines are sequences, rectangles are homologous
blocks:

A possible graph model is the compacted de Bruijn graph that recently demon-
strated utility in synteny identification. Unfortunately, construction of this graph is
prohibitive for large inputs: the fastest algorithm to date was able to process seven
whole mammalian genomes in under eight hours [2].

DE BRUIIJN GRAPH CONSTRUCTION

The de Bruijn graph is defined for an integer k and a set of strings. Here is an
example of construction for k = 2 and strings TGACGTC and TGACTTC. First, we
write down all substrings of size k and designate them as vertices:

Afterwards we glue vertices with the same labels to get the graph:

The last step is compression of non-branching paths so that the graph occupies less
space:

Construction of the compressed graph this way takes many resources. Instead, we
construct it directly from the input.

JUNCTIONS AND EDGES

Junctions are vertices that have at least two different predecessors or successors in
the graph. First and last k -mers of a string are also junctions:

Junctions are exactly vertices of the compacted graph. Once we know the set of
junctions, edges of the compressed graph are trivial to construct. All we have to do
is traverse the genomes and record junctions in the order they appear:

This way, we reduce the problem of graph construction to identifying junctions.

IDENTIFICATION OF JUNCTION CANDIDATES

We can narrow down the set of possible junction. To do so, we store edges of
the graph in a Bloom filter. Then for each vertex we query its neighbors to iden-
tify possible junctions. This representation takes small space, but results in some
false junctions due to false positives of the Bloom filter. A picture below shows such
representation, violet edges are false positives, squared vertices are junctions can-
didates:

REFINING THE GRAPH

Once we have the junction candidates, we can filter out false positives. To do so, we
store edges in a hash table and query neighbors of each vertex. However, we store
only edges touching candidates and this way save space, like on the picture below
where dashed part of the graph is not stored:

With this representation we can find all the junctions using low memory.

RESULTS

We benchmarked our algorithm against others on both real and simulated data.
Below are the results, each cell shows the running time and the memory usage in
parenthesis in gigabytes.

Dataset k BCALM [4] Sibelia [5] SplitMem [3] bwt-based [2] TwoPaCo [1]
1 thread 15 threads

62 E.coli 25 6m (1.6) 10m (12.2) 1h (178.0) 8m (0.9) 4m (0.1) 2m (0.4)
100 13m (2.5) 8m (7.6) 1h (178.0) 8m (0.5) 4m (0.2) 2m (0.4)

7 humans 25 7h (22.4) - - 14h (100.3) 7h (4.4) 1h (4.8)
100 2h (221.7) - - 13h (46.0) 5h (8.4) 1h (8.7)

8 primates 25 35h (85.6) - - - 15h (34.4) 2h (34.4)
100 - - - - 13h (56.1) 2h (61.7)

43+7 humans 25 - - - - - 11h (69.8)
100 - - - - - 15h (70.2)

93+7 humans 25 - - - - - 23h (77.4)

DISCUSSION

TwoPaCo makes significant progress in extending the number and size of genomes
from which a compacted de Bruijn graph can be constructed. We believe that this
progress will enable novel biological analyses of mammalian-sized genomes. For
example, de Bruijn graphs can now be applied to construct synteny blocks for closely
related mammalian species, similar to how they were applied to bacterial genomes.
We also developed a procedure that splits input into subsets that can be processed
independently. It allows handling large inputs even on machines with limited memory
for the cost of running time. TwoPaCo can also be useful in other applications, such
as the representation of multiple reference genomes or variants between genomes.

REFERENCES

[1] Minkin, I., Pham, S., Medvedev, P. (2016). TwoPaCo: An efficient algorithm to build the
compacted de Bruijn graph from many complete genomes.
arXiv preprint arXiv:1602.05856.

[2] Baier, U., Beller, T., Ohlebusch, E. (2015).
Graphical pan-genome analysis with compressed suffix trees and the Burrows-Wheeler transform.

[3] Marcus, S., Lee, H., Schatz, M. C. (2014).
SplitMEM: a graphical algorithm for pan-genome analysis with suffix skips.

[4] Chikhi, R., Limasset, A., Jackman, S., Simpson, J. T., Medvedev, P. (2014).
On the representation of de Bruijn graphs.

[5] Minkin, I., Patel, A., Kolmogorov, M., Vyahhi, N., Pham, S. (2013).
Sibelia: a scalable and comprehensive synteny block generation tool for closely related microbial
genomes.


