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ABSTRACT

There have been many widely used genome rearrangement models, such as reversals,
Hannenhalli-Pevzner (HP), and double-cut and join. Though each one can be precisely
defined, the general notion of a model remains undefined. In this paper, we give a formal set-
theoretic definition, which allows us to investigate and prove relationships between distances
under various existing and new models. Among our results is that sorting in the HP model is
equivalent to sorting in the reversal model when the initial and final genomes are linear uni-
chromosomal. We also initiate the formal study of single-cut operations by giving a linear
time algorithm for the distance problem under a new single-cut and join model.
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1. INTRODUCTION

Dobzhansky and Sturtevant (1938) first noticed that the pattern of large scale rare events, called

genome rearrangements, can serve as an indicator of the evolutionary distance between two spe-

cies.With the pioneering work of Sankoff and colleagues to formulate the question of evolutionary distance in

purely combinatorial terms (Sankoff et al., 1990; Sankoff, 1992), the mathematical study of genome re-

arrangements was initiated. Here, the evolutionary distance is determined as the smallest number of re-

arrangements needed to transform one genome (abstracted as a gene-order) into another. This has given rise

to numerous combinatorial problems, including distance, median, aliquoting, and halving problems, which

are used to build phylogenetic trees and infer other kinds of evolutionary properties.

An underlying challenge of such approaches is to define an appropriate model, which specifies the kinds of

rearrangements allowed. On one hand, the model should be as accurate as possible, including all the possible

underlying biological events and weights which reflect their likelihood. On the other, answering questions like

the median or distance can be computationally intractable for many models. The trade-offs between these, as

well as other, considerations decide which rearrangement model is best suited for the desired type of analysis.

Though the ideas of genomes and rearrangements are inherently biological, they require precise math-

ematical definitions for the purposes of combinatorial analysis. Earlier definitions of genomes as signed

permutations did not generalize well to genomes with duplicates, but recently a more general set-theoretic

definition in terms of adjacencies has become used (Bergeron et al., 2006). However, though particular

models, like hp (Hannenhalli and Pevzner, 1995a) or dcj (Yancopoulos et al., 2005), have their own precise

definitions, the notion of a model, in general, remains undefined. In this article, we give such a definition
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and show how current rearrangement models can be defined within our framework. This allows us to

investigate and prove things about the relationship between sorting distances under different models, which

we present in combination with what is already known to give an exposition of current results.

Recently, it was observed by Bergeron et al. (2008) that most of the events in some parsimonious

evolution scenarios between human and mouse were operations which cut the genome in only one place,

such as fusions, fissions, semi-translocations, and affix reversals (reversals which include a telomere). Such

scenarios have applicability to the breakpoint reuse debate (Alekseyev and Pevzner, 2007a; Pevzner and

Tesler, 2003; Sankoff and Trinh, 2005; Bergeron et al., 2008) since they can suggest a low rate of reuse. In

this article, we initiate the formal study of such single-cut operations by giving a linear time algorithm to

find the minimum distance under a new single-cut and join (scj) model1 and using it to determine the scj

distance between the human and several other organisms.

2. PRELIMINARIES

We begin by giving the standard definition of a genome, consistent with Bergeron et al. (2006). We

represent the genes by a finite subset of the natural numbers, N � N. For a gene g 2 N, there is a

corresponding head gh and tail gt,which are together referred to as the extremities of g. The set of all

extremities of all genes in N is called Next. The set {p, q},where p and q are extremities, is called an

adjacency. We denote by Nadj the set of all possible adjacencies of N. The one-element set {p}, where p is

an extremity, is called a telomere. We denote by Ntel the set of all possible telomeres of N. Telomeres and

adjacencies are collectively referred to as points. A genome G � Nadj [ Ntel is a set of points such that each

extremity of a gene appears exactly once2:
[

x2G

x¼Next and for all x, y 2 G, x \ y¼;:

For example, the genome G¼ {{1t}, {1h, 2h}, {2t, 3h}, {3t, 4t}, {4h}} is defined on the set of genes {1, 2,

3, 4}. For brevity, we will sometimes use signed permutation notation to describe a uni-chromosomal linear

genome; for example, the same genome can be written as as G¼ (1, �2, �3, 4). However, this is just a

shorthand notation and the underlying representation of the genome is always as a set of points. We denote

by N(G) the set of genes underlying the genome G. Finally, we define G to be the set of all possible

genomes over all possible gene sets.

Though this definition of a genome does not immediately reflect the notion of chromosomes or gene-

orders, these are reflected as properties of the genome graph. Given a genome G, its genome graph is an

undirected graph whose vertices are exactly the points of G. The edges are exactly the genes of G, where

edge g connects the two vertices that contain the extremities of g (this may be a loop). It is easy to show that

the genome graph is a collection of cycles and paths (Bergeron et al., 2006).

We can now define a chromosome as a connected component in the genome graph. We also say that a

sequence of extremities p1, . . . , pm is ordered if there exists a path which traverses the vertices associated

with the extremities in the given order. Note that questions like the number of chromosomes, whether two

genes lie on the same chromosome, or whether extremities are ordered, can all be answered in linear time

by constructing and analyzing the genome graph.

Another useful graph is the adjacency graph (Bergeron et al., 2006). For two genomes A and B, AG(A, B)

is an undirected, bipartite multi-graph whose vertices are the points of A and B. For each x 2 A and y 2 B

there are jx\ yj edges between x and y. It is not difficult to show that this graph is a vertex-disjoint

collection of paths and even-cycles and can be constructed in linear time (Bergeron et al., 2006). We denote

by Cs(A, B), Cl(A, B), and I(A, B) the number of short cycles (length two), long cycles (length greater than

2), and odd paths in AG(A, B), respectively. We use the term A-path to refer to a path that has at least one

endpoint in A, and BB-path (respectively, AA-path) to one with both endpoints in B (respectively, A).

1Note that here scj refers to single-cut and join, as opposed to single-cut or join which was recently introduced by
Feijão and Meidanis (2009).

2Though this article focuses on genomes without duplicate genes, this definition could be extended to the more
general case by treating the set of genes and its corresponding derivatives as multi-sets, including the genome.
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3. MODELS, OPERATIONS, AND EVENTS

We now present a formal treatment of rearrangement models, beginning with the main definition:

Definition 1 (Rearrangement Models, Operations and Events). A rearrangement operation (also

called a model) is a binary relation R � G ·G. A rearrangement event is a pair R¼ (G1, G2) 2 G·G.

Alternatively, we can treat R as a function in the standard way of viewing relations as functions. Namely,

R : G [ f;g�!G [ f;g where R(C)¼G2 if C¼G1 and R(C)¼; otherwise. We say that R is an R event if

R 2 R.

For example, if we have genes {1,2,3} and a genome G¼ {{1h}, {1t, 2h}, {2t},{3h}, {3t}}, then

a possible event is R¼ (G, {{1h}, {1t, 2h}, {2t, 3h}, {3t}}). This event has the effect of fusing the two

chromosomes of G. On the other hand, a fusion operation R is given by the set of all pairs (G1, G2) such

that there exist extremities p, q 2 N(G1)ext and G2 [ ffpg, fqgg¼G1 [ ffp, qgg. It is easy to see that R is

an R-event. Thus the operation R captures the general notion of a fusion as a type of rearrangement, while

the event R captures this particular instance of a fusion. Most current literature does not make a formal

distinction between types of rearrangements (which we call operations) and their particular instances

(which we call events), but this is necessary for defining the notion of a rearrangement model.

Current literature often makes the informal distinction between models, such as dcj or hp, and opera-

tions, such as reversals or fusions. Operations are considered more biologically atomic, with a model being

a combination of these atomic operations. Here, we maintain this notational consistency; however, we note

that the terms model and operation are mathematically equivalent.

In this article, we focus on the double-cut and join (dcj) model and its subsets (referred to as submodels

in the context of models).

Definition 2 (DCJ). Let G1 and G2 be two genomes with equal gene content, i.e. N(G1)¼N(G2). Then

(G1, G2) 2 DCJ if and only if there exist extremities p, q, r, s such that one of the following holds:

(a) G2 [ ffp, qg, fr, sgg¼G1 [ ffp, rg, fq, sgg
(b) G2 [ ffp, qg, frgg¼G1 [ ffp, rg, fqgg
(c) G2 [ ffqg, frgg¼G1 [ ffq, rgg
(d) G2 [ ffq, rgg¼G1 [ ffqg, frgg

This definition is equivalent to the one given by Yancopoulos et al. (2005) and Bergeron et al. (2006). A

more intuitive interpretation of, for example, (a), is that the event cuts both adjacencies {p, q} and {r, s} in

G1 and replaces them with the adjacencies {p, r} and {q, s} in G2.

Note that an event that satisfies one of the conditions (b)-(d) of the dcj model only cuts the genome in

one place. These events define the submodel of dcj called single-cut and join (scj), which we will study in

Section 8. We will also consider restrictions of models so that they only deal with linear, circular, and/or

uni-chromosomal genomes:

Definition 3. Given a model M, let

� Mlin¼f(G1, G2)j(G1, G2) 2 M and G1 and G2 are linearg:
� Muni¼f(G1, G2)j(G1, G2) 2 M and G1 and G2 are uni-chromosomalg:
� Mcirc¼f(G1, G2)j(G1, G2) 2 M and G1 and G2 are circularg:

There are many questions one can ask within any model, including sorting, distance, median, halving, or

aliquoting. We will focus on the sorting and distance problems here:

Definition 4 (Sorting Sequence and Distance). A sequence of events R2, . . . , Rm sorts G1 into G2 if

G2¼Rm( . . . (R1(G1))). The sorting distance between G1 and G2 under a model R, denoted by dR(G1, G2),

is the length of a shortest sorting sequence such that all Ri are R events. If such a sequence does not exist

then we say dR(G1, G2)¼1. We say an R-event R is R-sorting with respect to G1 and G2 if

dR(R(G1), G2)¼ dR(G1, G2)� 1.
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Given two genomes, we can either find a shortest sorting sequence or just the sorting distance. Since the

number of possible events in each step is polynomial, if we have a polynomial time algorithm for distance,

then we also have one for sorting (Hannenhalli and Pevzner, 1999). That is why when discussing poly-time

complexity, we will focus only on the distance problem. Note however that the precise complexities may

differ, as for example is the case for the reversal model, where the distance can be computed in linear time

(Bader et al., 2001) while the best-known sorting algorithms have worst-case time complexity

O(n3=2
ffiffiffiffiffiffiffiffiffiffi
log n
p

) (Tannier et al., 2007).

4. SUBMODELS OF DOUBLE-CUT AND JOIN

Motivated by the variety of biological systems, many distinct rearrangement models have been studied.

These models differ in several aspects, spanning a whole space of genome rearrangement models. The three

most relevant dimensions of this space are (i) the number of chromosomes a genome may have, (ii) the

shape that the chromosomes may have (i.e., linear or circular), and (iii) the maximum number of chro-

mosome cuts (and joins) an operation may perform.3 This three-dimensional space is visualized in Figure 1.

Each of the corners of the cube are formally defined by deriving a submodel from either dcj or scj using the

linear and/or uni-chromosomal restrictions. For example, hp¼ dcjlin. One can also think of these models in

terms of the operations they allow, which is shown in Table 1.

Of the corners of the cube visualized in Figure 1, some are of particular interest and thus have been

studied more than others. The first model to be studied was the rev model, where the only allowed

operation was the reversal. The biological motivation for this model goes back to Nadeau and Taylor

(1984) and it was first formally modeled by Sankoff (1992). The first polynomial-time algorithm for

REV

HP DCJ

DCJuni

SCJSCJlin

SCJuni,lin
SCJuni

only linear
chrom

no restriction

max
2-cut

max
1-cut

only
one 

chrom

no
restr.

FIG. 1. The space of dcj genome rearrangement submodels and their relationships, as given in Sections 5 and 6. Not

shown in the cube are circular-only models, which are the topic of Section 7. An arrow on an edge from M to M0

indicates that M0 is stronger than M. An edge between M and M0 with a circular ending at M0 indicates that M0 and M are

weakly-equivalent, though there are genomes sortable under M0 but not under M.

3In this article, we focus on double and single-cut operations. However, more general k-cut operations have also been
considered (Alekseyev and Pevzner, 2007b).
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computing the reversal distance and solving the reversal model was given by Hannenhalli and Pevzner

(1995b). In the same year, Hannenhalli and Pevzner (1995a) also looked at a model where multiple linear

chromosomes are allowed, as is often the case in eukaryotic genomes. After its authors, the resulting model

is called the hp model. A combination of work showed that the distance under hp can be computed in poly-

time (Hannenhalli and Pevzner, 1995a; Tesler, 2002; Ozery-Flato and Shamir, 2003; Jean and Nikolski,

2007; Bergeron et al., 2009).

A more recently introduced model is the double-cut and join (dcj), which encompasses all events that

can be achieved by first cutting the genome in up to two places, and then rejoining them in different

combinations (Yancopoulos et al., 2005). Though such a model is less biologically realistic than the hp

model, there are fast algorithms for solving it (Bergeron et al., 2006) which have made it useful as an

efficient approximation for the hp distance (Adam and Sankoff, 2008; Lin and Moret, 2008; Mixtacki,

2008). The dcj model is a superset of all the other models in the cube, and is thus the most general.

The rev, hp, and dcj models are all double-cut models, in that they allow for the cutting of the genome

in two places. However, one can also consider models where only one cut is allowed. These make up the

bottom plane of the cube, with the most general of these being the already defined scj model. These models

have not yet been studied, since they are quite restrictive. However, we became aware of their relevance

when we looked at certain rearrangement scenarios in eukaryotic evolution. In particular, while studying

rearrangement scenarios between human and mouse with a minimum number of breakpoint reuses,

Bergeron et al. (2008) observed that most of the events (213 out of 246) were single-cut (186 semi-

translocations and affix reversals, 15 fissions and 12 fusions). This observation raised our interest in

studying scj and its submodels.

In Section 8, we give a linear time algorithm for the sorting distance in the scj model. When restricted to

linear chromosomes (scjlin), we have the single-cut equivalent of the hp model, allowing fissions, fusions,

semi-translocations, and affix reversals. The complexity of this model is unknown. The even more re-

strictive (scjuni)lin model consists of only affix reversals, which reverse a prefix/suffix of a chromosome,

and is the single-cut equivalent of the rev model. There is a simple 2-approximation algorithm for the

sorting distance, which increases the number of short cycles by at least one every two steps. However, the

complexity of the problem remains open. It is related to the problem of sorting burnt pancakes (Gates and

Papadimitiou, 1979; Cohen and Blum, 1995), which is similar except that the chromosome has an ori-

entation and only prefix reversals are allowed. The complexity of this problem is also open.

5. SORTING DISTANCE RELATIONSHIPS

In this section, we study the relationship between sorting distances under the various models represented

in the cube of Figure 1. For example, if you compare two models that are connected by an edge of the cube,

then the one that is furthest from the origin is, in some sense, at least as strong as the closer one. Some

models, however, are strictly stronger than others. Of course, it is clear from the definitions that, for

Table 1. Models and Elementary Operations

Model

Operation dcj hp scj scjlin (scjuni)lin

proper translocation � �
semi translocation � � � �
path fission/fusion � � � �
excision/integration �
reversal � � * * *

circularization/linearization � �
cycle fission/fusion � *

A Description of Some of the Models in Terms of the Elementary Operations Defined by Bergeron et al. (2006). A dark bullet means

that the operation is fully contained in the model, no bullet means that the operation is disjoint with the model, and an empty bullet

means that some but not all of the operation is contained in the model. Furthermore, each model is precisely the union of the operations

specified by the bullets.
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example, a multi-chromosomal genome can be sorted by scj and cannot be sorted by scjuni. However, we

are interested if there are genomes which can be sorted by both models, but with fewer steps in one than the

other. Formally, we define:

Definition 5 (Strong). A model M is as strong as a model M0 if for all genomes G1 and G2,

dM(G1,G2)� dM0(G1, G2). Furthermore, M is stronger than M0 if it is as strong as M0 and there exist two

genomes G1 and G2 such that dM(G1, G2) <dM0(G1, G2)<?.

We start with an easy observation and its immediate corollary:

Lemma 1 (Submodel Lemma). For any two models, M0 � M if and only if M is as strong as M0.

Proof. For the only if direction it is enough to observe that any sorting sequence under M0 is by

definition also a sorting sequence under M. For the if direction, let (G1, G2) be an element of M0. Then,

dM(G1, G2)¼ dM0(G1, G2)¼ 1, and hence (G1, G2) 2 M. &

Corollary 2. dcj is as strong as scj, and for all models M, M is as strong as Mlin and Muni.

We first study if the restriction to linear or uni-chromosomal genomes makes the dcj or scj models

stronger.

Lemma 3. scj is stronger than scjlin and than scjuni, while dcj is stronger than dcjuni.

Proof. Let G1¼ (1, 3, 2) and G2¼ (1, 2, 3). Since Corollary 2 shows that ‘‘as strong as’’ already holds

for each of the above relationships, it suffices to show that

� dscj(G1, G2)5 dscjlin
(G1, G2)51

� dscj(G1, G2)5 dscjuni
(G1, G2)51

� ddcj(G1, G2)5 ddcjuni
(G1, G2)51

We can sort G1 into G2 using two scj events. First, we make an excision by replacing points {1h, 3t} and

{2h} with {1h} and {2h, 3t}. Second, we make an integration by replacing points {1h} and {3h, 2t} with

{1h, 2t} and {3h}. However, there does not exist a sorting sequence of length two under either scjlin, scjuni,

or dcjuni models, though the genomes are clearly sortable under all these models. &

To complete the picture, it is already known that there are genomes that are sortable in hp but require more

steps than in dcj (for an example, see Bergeron et al., 2009), so dcj is stronger than hp.

We next look if the flexibility of double-cut operations makes the models in the top plane more powerful

than their respective counterparts in the bottom plane. There is a simple example that answers this question

in the affirmative.

Lemma 4. We have that

� rev is stronger than (scjuni)lin

� hp is stronger than scjlin

� dcjuni is stronger than scjuni

� dcj is stronger than scj.

Proof. Let G1¼ (1, �2, 3) and G2¼ (1, 2, 3). The Submodel Lemma shows that ‘‘as strong as’’ already

holds for each of the above relationships, so it suffices to show that

� drev(G1, G2)5 d(scjuni)(G1, G2)51
� dhp(G1, G2)5 d(scjlin)(G1, G2)51
� ddcjuni

(G1, G2)5 d(scjuni)(G1, G2)51
� ddcj(G1, G2)5 dscj(G1, G2)51 &

We can sort G1 into G2 using just one event in the rev model, while there is no single scj event that does

this. However, G1 is sortable into G2 using affix reversals (i.e. (scjuni)lin). The lemma follows by applying

the Submodel Lemma.
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We now compare (scjuni)lin with scjlin and show that the flexibility to create additional chromosomes in

intermediate steps adds power when we are restricted to single-cut operations and linear genomes.

Lemma 5. scjlin is stronger than (scjuni)lin.

Proof. Corollary 2 implies scjlin is as strong as (scjuni)lin. We show that for genomes G1¼ (1, �2, �3,

4) and G2¼ (1, 2, 3, 4),

dscjlin
(G1, G2)5 d(scjuni)lin

(G1, G2)51:

There exists a sorting sequence of length 4 under scjlin that makes a fission between �2 and �3, two affix

reversals of genes 2 and 3, respectively, and a final fusion. However, one can verify that using only affix

reversals the sorting distance is at least five, while six affix reversals suffice. &

In some cases, however, additional flexibility does not make a model stronger. Consider the scjuni model,

which differs from the (scjuni)lin model in that, besides affix reversals, it allows the circularization and

linearization of the chromosome. This obviously allows sorting a linear chromosome into a circular one,

something that (scjuni)lin does not allow. However, for genomes that are sortable under both models, we

will show that circularization/linearization cannot help to decrease the distance. We capture this rela-

tionship using the following definition:

Definition 6 (Weak Equivalence). Two models M and M0 are weakly equivalent if, for all genomes G1

and G2, if dM(G1, G2)<? and dM0(G1, G2)<? , then dM(G1, G2)¼ dM0(G1, G2).

We now study the models of Figure 1 which are weakly equivalent. We prove that circularizations and

linearizations in a uni-chromosomal environment do not add power to either the scj or the dcj models.

Lemma 6. scjuni and (scjuni)lin are weakly equivalent.

Proof. The condition that G1 is sortable into G2 under both scjuni and (scjuni)lin is equivalent to the

condition that G1 and G2 are both uni-chromosomal linear genomes. We thus need to show that for two

such genomes,

dscjuni
(G1, G2)¼ d(scjuni)lin

(G1, G2):

We show that for any optimal scjuni sorting sequence that creates a circular chromosome in an intermediate

step, there exists a sorting sequence of equal length without a circular chromosome. Since the only scj

operation that can be performed on a uni-chromosomal circular genome is to linearize it, we know that

every circularization is immediately followed by a linearization. Thus, w.l.o.g. the situation can be de-

scribed as an exchange of a prefix A and a suffix B:

However, the same effect can be achieved by two affix reversals, namely first reversing A and then B:

&

A similar situation occurs when we add circularization and linearization to the reversal model, though the

proof is more involved:

Lemma 7. dcjuni and rev are we weakly equivalent

Proof. The condition that G1 is sortable into G2 under both dcjuni and rev is equivalent to the condition

that G1 and G2 are both uni-chromosomal linear genomes. We need to show that for this type of genomes,
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ddcjuni
(G1, G2)¼ drev(G1, G2):

Consider an optimal dcjuni sorting sequence S that has the smallest possible number of circularizations. We

show, by contradiction, that this number is zero, proving the lemma. Let L be the genome prior to the first

circularization, let C be the one right after it, let C0 be the genome right before the first linearization, and let L0

be the one right after it. Let d be the length of the sorting sequence between C and C0 (these must be reversals).

We will apply Theorem 3.2 from Meidanis et al. (2000), which states that the reversal distance between

any two circular chromosomes (C and C0 in our case) is the same as the reversal distance between their

linearizations, if they share a telomere. If L and L0 share a telomere, then there is a sorting sequence with

shorter length that replaces dþ 2 events between them with d reversals, which contradicts the optimality of S.

Suppose w.l.o.g that the two telomeres of L are {p} and {s}, that {q} is a telomere in L0, that {q,r} is an

adjacency in L, and p, q, r, s are ordered in L. We can perform two reversals on L, the first one replacing {p}

and {q,r} with {q} and {p,r}, and the second replacing {p,r} and {s} with {p,s} and {r}. The effect on the

genome graph can be visualized as follows:

Note that circularizing the resulting genome, L@ yields genome C, and L@ shares a telomere with L0.
Therefore, by the theorem, there exist d reversals that sort L@ into L0. We can then get a new sorting

sequence that replaces the dþ 2 events between L and L0 with the two reversals described above followed

by d reversals given by the theorem of Meidanis et al. (2000). This sorting sequence has the same length as

S but has one less circularization, a contradiction. &

The results of this section are compactly summarized in Figure 1 by marking the endpoints on the edges

of the cube. There remains one edge whose relationship we have not yet categorized, which is the question

of whether the hp model is stronger than the rev model, or, in other words, whether there exist uni-

chromosomal linear genomes that require less steps to sort under hp than under rev. In Section 6, we will

prove that the two models are weakly equivalent. Note that this is not trivial, because under hp we can split

chromosomes in intermediate steps, which proved to make scjlin stronger than (scjuni)lin (Lemma 5). In fact,

the weak equivalence of hp and rev is a curious asymmetry in the cube, since the power to create multiple

chromosomes in intermediate steps makes all the other models in the back plane stronger than their

counterparts in the front.

The Submodel Lemma implies other results which we have not explicitly stated but that can be deduced

by looking at the transitive relationship between the edges. For instance, there are genomes that are sortable

under scjuni that require less steps under scjlin. Additionally some models which are not subsets of each

other (like scj and hp) are incomparable. That is, there are genomes that are sortable under scj but require

less steps under hp, and there are other genomes for which the opposite holds. The examples of (1, 3, 2) and

(1, �2, 3) are sufficient to prove incomparability of scj with rev and with hp.

6. THE HP AND REV MODELS ARE WEAKLY EQUIVALENT

There has been a rich theory developed to study sorting distances under hp which we will make use of in

this section (Bergeron et al., 2009). One of its main results is that when sorting A into B, one should

consider the case of whether A contains a so-called unoriented component or not. When there is an

unoriented component, there is always an hp-sorting event that is a translocation or a reversal (if the

genome is uni-chromosomal this must be a reversal). In the other case, the hp distance turns out to be

exactly the dcj distance, which has been completely characterized in terms of the effect of sorting oper-

ations on the adjacency graph AG(A, B). Formally, we can restate the known results as follows:

Lemma 8. (Bergeron et al., 2009, 2006). Let A and B be two uni-chromosomal genomes sortable in

the hp model. At least one of the following holds:

(a) There exists a reversal which is hp-sorting from A to B.

(b) For any hp-event, we have that it is hp-sorting from A to B if and only if it either increases the

number of cycles in AG(A,B) by one or the number of odd paths by two.
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Lemma 8 now allows us to prove the main theorem that hp and rev are weakly equivalent. Our approach

is to show that one can in all cases find a reversal which is hp-sorting.

Theorem 9. For any two uni-chromosomal linear genomes A and B,

dhp(A, B)¼ drev(A, B):

Proof. It is sufficient to show that there exists a reversal-event on A that is hp-sorting. Assume for the

sake of contradiction that property (a) of Lemma 8 does not hold and there is no such reversal. Then any

hp-sorting event from A to B must be a fission, since all other hp events require multiple chromosomes.

Denote by F such a fission-event. The effect of a fission on the adjacency graph AG(A, B) is to either turn a

cycle into an even path or split a path in two. Since a fission can never increase the number of cycles, property

(b) of Lemma 8 implies that F increases the number of odd paths by two. This can only happen if the vertex

split by F lies on an even path, and, therefore, the adjacency graph must contain an even path. Since A and B

are both uni-chromosomal linear, there are exactly four telomeres and hence exactly two paths. If one of the

paths is even so must be the other one, and hence there must be one AA-path and one BB-path.

Let x¼ {p} be a telomere of A, let y¼ {q,r} be any A-adjacency that lies on the BB-path, and suppose

without loss of generality that p, q, r are ordered. We can define an event that reverses the interval between

x and y. Formally, let R¼ (A, A n ffpg, fq, rgg [ ffp, rg, fqgg). The effect of R on the adjacency graph is

to change the two even paths into two odd paths. Therefore, R is an hp-sorting reversal-event by property

(b) of Lemma 8, contradicting our assumption that property (a) does not hold. &

7. CIRCULAR-ONLY MODELS

In this section, we consider restricting dcj and its sub-models so that they only contain circular chro-

mosomes. As with linearity, we consider the effects of the circularity restriction in combination with the

other two dimensions of the cube of Figure 1: the number of chromosomes and the number of allowed cuts.

First, we consider the restriction of circularity on the full dcj model, and show that when the initial and

final genomes are circular, no optimal dcj sorting sequence will contain any linear chromosomes.

Lemma 10. Let A and B be two circular genomes, and let R be a dcj-sorting event on A. Then

R 2 dcjcirc.

Proof. Since circular genomes do not contain any telomeres, R cannot act on telomeres of A, and so

either case (a) or case (d) of Definition 2 holds. Suppose for the sake of contradiction that case (d) holds,

and that an adjacency {p, q} is replaced by two telomeres {p} and {q}. Because all the connected

components of AG (A, B) are cycles and not paths, the effect of R is to replace a cycle by an even path. The

distance under the dcj model (Bergeron et al., 2006) is

ddcj(A, B)¼ jN(A)j � I(A, B)=2�Cs(A, B)�Cl(A, B):

Therefore, R actually increases the dcj distance and cannot be dcj-sorting, a contradiction. Hence, case (a)

must hold, and since in this case R(A) \ A does not contain any telomeres, R(A) is also a circular genome.&

Corollary 11. dcjcirc and dcj are weakly equivalent.

Corollary 12. (dcjuni)circ and dcjuni are weakly equivalent.

As far as applying the circularity restriction to the scj model, observe that any scj-event defined on a

circular genome destroys circularity of one chromosome; thus, scjcirc¼;.

8. SINGLE-CUT AND JOIN

We have already motivated the study of the sorting distance under the scj model, and in this section we

give a linear time algorithm to compute it. Let A and B be two arbitrary genomes with the same underlying

set of genes, N. We will use the following potential function in our analysis:
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�(A, B)¼ jNj � I(A, B)=2�Cs(A, B)þCl(A, B):

First, we show that the potential function is 0 if and only if the two genomes are the same:

Lemma 13. A¼B if and only if F(A, B)¼ 0.

Proof. The only if direction follows trivially from the definition of the adjacency graph. The if direction

follows from a simple counting argument. Let a be the number of adjacencies in A, and t be the number of

telomeres. By definition, aþ t/2¼ jNj. Since each short cycle accounts for one adjacency of A, and each odd

path accounts for one telomere of A, we have that Cs(A, B)þ I(A, B)/2� aþ t/2¼ jNj. Therefore, for the

equality of the lemma to hold, we must have Cl(A, B)¼ 0, Cs(A, B)¼ a, and I(A, B)¼ t. Furthermore, since

each of the aþ t A-vertices is part of only one path or cycle (but not both) and each of the a cycles and t paths

contains at least one vertex, the length of each path must be one. Since AG(A, B) contains only paths of length

1 and short cycles, we conclude that the points of A must be the same as the points of B. &

We can show using simple case analysis that F can decrease by at most one after any single event.

Lemma 14. For all scj events R, F(R(A), B)�F(A, B)�� 1.

Proof. We prove this statement for each of the three cases of the scj definition. Consider case (b) of the

definition, where B [ ffp, qg, frgg¼A [ ffp, rg, fqgg. Suppose that {p, q} belong to a cycle in AG(A).

The effect of the event on the adjacency graph is to combine a cycle and a path (the one ending in {r}) into

a single path. The parity of the new path is the same as that of the old one because all cycles are even, so

there is no change in the number of odd paths. Also, the number of long cycles decreased by at most one

and the number of short cycles did not increase, proving the lower bound. If on the other hand, {p,q} belong

to a path, then the effect of the event is interchange the parts of two paths. If the old paths had different

parities, then so will the new ones, and if the old paths had the same parities, so will the new ones. Since no

cycles are affected, this implies the lower bound.

Now consider case (c), where B [ ffqg, frgg¼A [ ffq, rgg. This has the effect of merging the vertices

{q} and {r} in AG(A, B). If the vertices lie on the same path in AG(A, B), then the path must be even, and

the new graph will have this path removed and one new cycle created, proving the lower bound. If the

vertices lie on different paths, then the event has the effect of merging the two paths. Since this cannot

increase the number of odd paths, the lower bound holds.

For the final case (d), B [ ffq, rgg¼A [ ffqg, frgg. The effect of the event is to split the vertex {q,r} in

AG(A, B). If this vertex is part of a cycle, then the number of long cycles decreases by at most one, and the

number of short cycles does not increase. Since the new path will be even, the lower bound holds.

Combined with the fact that F cannot be negative, this gives a lower bound of F(A, B) on the sorting

distance. We now consider Algorithm 1, whose cases are also illustrated in Figure 2. &

Algorithm 1. Algorithm for sorting under scj

while A=B do

if there exists an A-path P with length� 3 then

Let p, q, r be the first three edges (from an arbitrary A end of P).

Let A0 ¼A n ffpg, fq, rgg [ ffrg, fp, qgg.
else if there exists an A-path P with length of 2 then

Let p and q be its two edges.

Let A0 ¼A n ffpg, fqgg [ ffp, qgg
else if there exists a BB-path P then

Let p and q be the first two edges (from an arbitrary end of P).

Let A0 ¼A n ffp, qgg [ ffpg, fqgg.
else if there exists a long cycle then

Let {p,q} be a vertex of the cycle in A.

Let A0 ¼A n ffp, qgg [ ffpg, fqgg.
end if

Print A0.
Let A¼A0.

end while
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Lemma 15. Algorithm 1 terminates and outputs an scj sorting sequence of length F(A, B).

Proof. First, we observe that one of the cases always applies since if A=B then there must be at least

one path of length greater than one or a long cycle. One can also verify that in each case, (A, A0) is an scj

event. Finally, we show that F(A0, B)�F(A, B)¼� 1:

Case 1: A short cycle is created and the length of P decreases by two.

Case 2: An even path (P) is removed and a short cycle is created.

Case 3: An even path (P) is replaced by two odd paths.

Case 4: A long cycle is replaced by an even path. &

Thus, we have

Theorem 16. d
scj

(A, B)¼F(A, B)¼ jNj � I(A, B)/2�Cs(A, B)þCl(A, B).

Corollary 17. d
scj

(A, B) is computable in O(jNj) time.

Note the similarity to the formula for the dcj distance (Bergeron et al., 2006):

ddcj(A, B)¼ jNj � I(A, B)=2�Cs(A, B)�Cl(A, B)

Thus, the difference between the scj and dcj distances is 2Cl(A, B), i.e. twice the number of long cycles in

the adjacency graph.

9. EXPERIMENTAL RESULTS

We performed six different comparisons, all with respect to the human. In the first, we took the 281

synteny blocks of the mouse-human comparison done by Pevzner and Tesler (2003). In the other five, we

used the 1359 synteny blocks of the chimp, rhesus monkey, mouse, rat, and dog used by Ma et al. (2006).

For each comparison, we computed the scj, dcj, and hp distances. The hp distance was computed using

GRIMM (Tesler, 2002). The results are shown in Table 2.
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q r

r

p

p
q

q p q

p q

p q

p q

Case 1 Case 2 Case 3 Case 4

AG(A,B)

AG(A’,B)

FIG. 2. The four cases of Algorithm 1.

Table 2. Rearrangement Distances under Different Models from Different Organisms to the Human

Model Ratio

Organism #Blocks dcj hp scj scj/ hp

Mouse (Pevzner and Tesler, 2003) 281 246 246 300 1.2

Chimp 1359 22 23 58 2.5

Rhesus Monkey 1359 106 110 224 2.0

Mouse (Ma et al., 2006) 1359 408 409 642 1.6

Rat 1359 707 753 1291 1.7

Dog 1359 291 295 523 1.8
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One immediately sees that the scj scenarios are far from parsimonious relative to the hp model.

However, we stress that the goal of the scj model is to explore the importance of double-cut operations in

evolution, and not to be a realistic evolutionary model. It can be an indicator of how many double-cut

operations are really an advantage and how many are just an alternative that can be avoided. For example,

consider that the difference between the hp and scj distances is 150% in the chimp-human comparison, and

60% in the mouse(Ma et al., 2006)-human comparison. This might suggest that somehow single-cut

operations play a lesser part in the chimp-human evolution than in the mouse-human evolution. We also

notice that the ratio of the scj to hp distance in the mouse-human comparison is much lower (1.2 vs. 1.6)

using the synteny blocks of Pevzner and Tesler (2003) than using the synteny blocks of Ma et al. (2006).

This suggests the sensitivity of this kind of breakpoint reuse analysis to synteny block partition.

In Section 5, we showed that there exist genomes for which the scj distance is smaller than the hp

distance (for example 1,3,2). However, in all the experimental results, the hp distance is always much

smaller. This suggests that the scj operations not allowed by hp, such as excisions, integrations, circu-

larizations, and linearizations, are infrequent relative to fissions, fusions, translocations, and reversals.

10. CONCLUSION

In this article, we gave a formal set-theoretic definition of rearrangement models and operations, and

used it to compare the power of various submodels of dcj with uni-chromosomal and/or linear/circular

restrictions. We hope that the formal foundation for the notion of models will eventually lead to further

insights into their relationships.

We also initiated the formal study of single-cut operations by giving a linear time algorithm for com-

puting the distance under a new single-cut and join model. Many interesting algorithmic questions remain

open, including the complexity of sorting using linear scj operations, and sorting using affix reversals.
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