
Computability of Models for Sequence Assembly

Paul Medvedev
�
, Konstantinos Georgiou

�
, Gene Myers

�
, and Michael Brudno

�
�
University of Toronto, Canada

�
Janelia Farms, Howard Hughes Medical Institute, USA�

pashadag,cgeorg,brudno � @cs.toronto.edu, myersg@janelia.hhmi.org

Abstract. Graph-theoretic models have come to the forefront as some of the
most powerful and practical methods for sequence assembly. Simultaneously, the
computational hardness of the underlying graph algorithms has remained open.
Here we present two theoretical results about the complexity of these models for
sequence assembly. In the first part, we show sequence assembly to be NP-hard
under two different models: string graphs and de Bruijn graphs. Together with
an earlier result on the NP-hardness of overlap graphs, this demonstrates that all
of the popular graph-theoretic sequence assembly paradigms are NP-hard. In our
second result, we give the first, to our knowledge, optimal polynomial time al-
gorithm for genome assembly that explicitly models the double-strandedness of
DNA. We solve the Chinese Postman Problem on bidirected graphs using bidi-
rected flow techniques and show to how to use it to find the shortest double-
stranded DNA sequence which contains a given set of � -long words. This algo-
rithm has applications to sequencing by hybridization and short read assembly.

1 Introduction

Most current technologies for sequencing genomes rely on the shotgun method – the
genome (or its portion) is broken into many small segments (reads) whose sequence
is then determined. The problem of combining these reads to reconstruct the source
genome is known as sequence (or genome) assembly, and is one of the fundamental
algorithmic problems within bioinformatics. One basic assumption made by assembly
algorithms is that every read in the input must be present in the original genome. This
follows from the fact that it was read from the genome. Motivated by parsimony, some
methods made another, less justifiable assumption: that the original genome should be
the shortest sequence that contains every read as a substring. This assumption lead to the
casting of the genome assembly problem as the Shortest Common Superstring (SCS)
problem, which is known to be NP-hard [4].

The problem of modeling genome assembly as the SCS problem is that most genomes
have repeats – multiple identical, or nearly identical, stretches of DNA, while the SCS
solution would represent each of these repeats only once in the assembled genome. This
problem is known as over-collapsing the repeats. One way of solving this problem is
to build representative strings or structures for each repeat, and allow the assembly al-
gorithm to use these multiple times. Pevzner et al. [12] had the insight that by dividing
the reads into shorter � -long stretches (called � -mers), all of the instances of a repeat
collapse into a single set of vertices. They represent each read as a walk on a de Bruijn
graph (defined below), and the assembly could then be represented as a superwalk – a

ATTGCC

GGCAATA B C

5’

5’ 3’

3’

Fig. 1. A. An example of double stranded DNA. The sequence read from this DNA can be either
ATTGCC or GGCAAT. B. Three possible types of overlaps between two reads: each read can
be in either of two orientations, but two of the cases (both to the left and both to the right) are
symmetric. C. The three corresponding types of bidirected edges. The left node corresponds to
the lower read. Note that the arrow points into a node if and only if the overlap covers the start
(5’) of the read.

walk that includes all of the input walks. In this formulation every edge of the de Bruijn
graph has to be present in any solution and can be used multiple times. The solution
to the assembly problem is formulated as a variation on finding an Eulerian tour, and
because the Eulerian tour problem is solvable in polynomial time this lead to the hope
of a polynomial algorithm for sequence assembly. This approach was later expanded to
A-Bruijn graphs [13], where the initial subdivision into � -mers is not necessary, but the
basic algorithmic problem of searching for a superwalk remains.

Myers [10] provides for an alternative model of sequence assembly, using a string
graph. Instead of dividing the reads into � -mers, he builds an overlap graph – a graph
where nodes correspond to reads and edges correspond to overlaps (the prefix of one
read is the suffix of the other). Through the process of removing redundant edges he is
able to classify all edges as either required or optional, and the goal of the assembly is
to find the shortest walk which includes all of the required edges. The main algorithmic
difference between the de Bruijn / A-Bruijn and the string graph models for sequence
assembly is that while in the latter some edges are required and others are optional,
in the former all edges are required, but walks have been pre-specified and must be
included in the solution. In our first result, we show that sequence assembly with both
string graphs and de Bruijn graphs is NP-hard by reduction from Hamiltonian Cycle and
Shortest Common Superstring, respectively. Together, these two proofs demonstrate
that both of the popular graph-theoretic sequence assembly paradigms are unsolvable
by optimal polynomial-time algorithms unless �
	��
� .

Another algorithmic problem faced by assembly algorithms is the treatment of
double-stranded DNA (see Figure 1A). A DNA molecule consists of two strands which
are reverse compliments of each other. The start (called 5’) of one strand is comple-
menting the end (called 3’) of the other. Whenever DNA is sequenced, the molecule
is always read in the same direction, from 5’ to 3’, but it is impossible to know from
which of the two strands the sequence is read. Many sequence assembly algorithms use
heuristics to determine the strand for each read. The EULER method [12] uses both the
reads and their reverse-complements to build the de Bruijn graph and searches heuristi-
cally for two “complementary” paths. In the work of Kececioglu and Myers [6] strand
selection for a read is formulated as the NP-hard maximum weight cut problem.

2

In 1992, Kececioglu [8] introduced an elegant method for dealing with double-
strandedness by modeling overlaps between DNA molecules using a bidirected graph.
Each read is represented by a single node, and each overlap (edge) has an orientation
at both endpoints. The three types of bidirected edges correspond to the three possible
ways in which the overlap can occur (see Figure 1B & C). Bidirected graphs were
further used for sequence assembly in [9, 10] and to model breakpoint graphs in [7].
Remarkably, however, bidirected graphs have been studied within the context of graph
theory already in the 1960s when Edmonds formulated the problem of bidirected flow (a
generalization of network flow to bidirected graphs) and showed it equivalent to perfect
b-matchings [1]. Edmonds’ work was later extended by Gabow [3], who gave the fastest
to-date algorithm for bidirected flow. In our second result, we extend Gabow’s and
Edmonds’ work to give a polynomial time algorithm for solving the Chinese Postman
Problem in bidirected graphs. By combining this algorithm with Pevzner’s work on de
Bruijn graphs [11, 12] and Kececioglu’s work on modeling strandedness with bidirected
graphs [8], we show how it can be used to find the shortest (double-stranded) DNA
sequence with a given set of � -long DNA fragments. To the best of our knowledge, this
is the first optimal polynomial time assembly algorithm which explicitly deals with the
double-stranded nature of DNA.

2 Preliminaries

In this section, we give the background and definitions needed for the rest of this paper.

2.1 Strings, Overlap Graphs, de Bruijn Graphs, and Molecules

Let � and � be two strings over the alphabet � . The concatenation of these strings is
denoted as ����� . The length of � is denoted by � ��� . The � th character of � is denoted
by ��� ��� . If ������� ���!� �"� , then �#� �%$&�'� is the substring beginning at the � th position
and ending at the � th position, inclusive. If there exists �%$(� such that ��)�*� �+$(�'� , then
we say � is a substring of � . For ,.-.� , ,"/ is , concatenated with itself � times if
�102� , and 3 otherwise. A string of length � is called a 4 -mer. The 4 -spectrum of �
is the set of all � -mers that are substrings of � . A 4 -molecule is a pair of � -mers which
are reverse compliments of each other. We say a � -molecule corresponds to each of
its two constitutive � -mers. The 4 -molecule-spectrum of a DNA molecule is the set
of all � -molecules corresponding to the � -mers of the � -spectrum of either of the DNA
strands.

We say � overlaps � if there exists a maximal length non-empty string 5 which
is a prefix of � and a suffix of � (notice this definition is not symmetric). The length
of the overlap is 67�#89�:$;�=<>	?� 5�� . If � does not overlap � then 67�#89�:$;�=<>	A@ . LetB 	DC7E � $GFHFGFH$+EJI#K be a set of non-empty strings over an alphabet � . An overlap graph
of
B

is a complete weighted directed graph where each string in
B

is a vertex and the
length of the edge ,MLON is � NP�7Q167�#89,R$;NS< .

We say � is a superstring of
B

if for all �+$%E7T is a substring of � . The Shortest
Common Superstring (SCS) problem is to find the shortest superstring of

B
. It was

proven to be NP-hard for � �U�R0)V [4, 5]. We define the de Bruijn graph WYX"8(ZR< as a

3

0

0

-1

-1

E

-1000Z

02-10Y

-101-1X

0001W

DCBA

W X Y

Z

A B
C

D
E

Fig. 2. This is an example of a bidirected graph and its incidence matrix. We draw an edge that
is positive incident to a vertex using an arrow that is pointing out of the vertex, but this choice of
graphical representation is arbitrary.

directed graph, using a positive integer parameter � . The vertices of [\/S8 B < are CJ]�-
� / �#^S� such that] is a substring of E7T_K . We identify a vertex by the � -mer associated
with it. We abuse notation here by referring to a vertex in [\/`8 B < by the � -mer associated
with it. The edges are C7]:�a�'FbF �c�#Ld]:� VSFbFe�gf��h�i�j]k-l�\/hm � $%^c� such that] is a substring of E T K .
2.2 Bidirected Graphs and Flow

Consider an undirected (multi) graph n with a set of vertices o and a set of edgesp
. The multiplicity of an edge q is the number of edges in n whose endpoints are

the same as q ’s If the endpoints are distinct, the edge is called a link, otherwise it is a
loop. Additionally, we assign orientations to the edges. Every link has two orientations,
one with respect to each of its endpoints, while every loop has one orientation. There
are two kinds of orientations – positive and negative – and thus we can say an edge is
positive-incident or negative-incident to an endpoint. When taken together with the
orientations of its edges, n is called a bidirected graph. If there is additionally a weight
function �sr associated with the edges, we say the graph is weighted. The weight of a
graph is the sum of the weights of its edges. A bidirected graph is connected if its
underlying undirected graph is connected.

The orientations of the edges can be represented by an incidence matrix t`uwv
o!x p Q�L CyQsV`$HQz�'$+@`$G�'$+VSK (we omit n when it is obvious from the context). If
an edge q is not incident to a vertex , then t:89,R$;qj<*	{@ . For a link q and a vertex , ,
t:89,R$;qj<|	2f�� if q is positive-incident to , , and t:89,R$+q7<|	}Qz� if q is negative-incident
to , . For a loop q and a vertex , , t#8~,i$;qj< has the value of +2 if q is positive-incident
to , , and the value of -2 if q is negative-incident to , . See Figure 2 for an example
of a bidirected graph and its incidence matrix. The in-degree of a vertex , in graph
n is defined as]�qG�#�u 8~,�<�	�Q���� r+�'���;�G�a�'� r��(�#��� t:89,R$;qj< . Similarly, the out-degree is

defined as]�qH� mu 8~,#<�	 � � r%�'���%�H�b��� r����:�h� t#8~,R$+qj< . Let �h����u�8~,�<�	�]yqG� mu 89,#<hQ�]yqG�#�u 8~,�<�	� t#8~,R$+qj< be the balance at each vertex. n is balanced if the balance of each vertex is 0.
A 8~, � $;, / < -walk is a sequence , � $;q � $GFHFHFH$_, / � � $;q / � � $_, / where q7T is an edge inci-

dent to ,#T and ,#T m � , and for all V������
�=Q�� , q7T � � and q7T have opposite orientations at
,:T . Since the specification of vertices is redundant, we may omit them sometimes and
specify a walk as just a sequence of edges. A walk is said to be cyclical if its endpoints

4

are the same and q � and q / � � have opposite orientations at , � . A bidirected graph is
strongly connected if it is connected and for every edge there is a cyclical walk con-
taining it.

Note that we can view a loopless directed graph as a special kind of bidirected graph,
where every edge is positive-incident to one of its endpoints and negative-incident to
the other one. In this case, the definition of a walk reduces to its usual meaning in
directed graphs. However, there are some caveats. For example, it is possible for the
shortest walk between two vertices to repeat a vertex in a bidirected graph. In Figure
2, observe that there does not exist a walk between � and � which does not repeat a
vertex, something that is not possible in a directed graph.

A Chinese walk is a cyclical walk that traverses every edge at least once. Given
a weighted bidirected graph, the Chinese Postman Problem(CPP) is to find a mini-
mum weight Chinese walk (called a Chinese Postman Tour), or report that one doesn’t
exist. An Eulerian tour of a graph is a cyclical walk that contains every edge of the
graph exactly once, and a graph which contains an Eulerian tour is called Eulerian.
The following is a generalization of a well-known fact for directed graphs whose proof
is almost identical to the directed case and is therefore ommited.

Lemma 1. A bidirected graph n contains an Eulerian tour if and only if it is connected
and balanced.

Given a bidirected graph n , and vectors �#$%�
-} ¢¡ � u � and]g$+£j$_�¤-¥ �¦� u � , a
minimum cost bidirected flow problem [14] is an integer linear program where the
goal is to find ,l-l �§� u � that minimizes ���;, subject to the constraints that]���,l�¨£
and ���¨t u �G,l�¨� . Here, � refers to the inner product between two vectors, and � is a
component-wise comparison operator.

3 The String Graph Framework

In [10], Myers introduces a string graph framework for sequence assembly. A string
graph is built from an overlap graph through the process of transitively inferable edge
reduction – whenever N and 5 overlap , , and 5 overlaps N , the overlap of 5 to , is
said to be inferable from the other two overlaps, and is removed from the graph. Myers
demonstrates a fast algorithm for removing transitively inferable edges from the graph,
which, in combination with statistical methods, associates a ”selection” constraint with
each edge. The selection constraint states that the edge must appear in the target genome
either at least once (it is required), exactly once (it is exact), or any number of times
(it is optional). The key property of string graphs is that any cyclical walk that respects
the selection constraints represents a valid assembly of the genome, and the weight of
the walk is the length of the assembled genome. After building the string graph, the
algorithmic problem is to find a cyclical walk that visits each edge in accordance with
its selection constraint. Appealing to parsimony, the goal is to find a walk with minimum
weight. In this section, we show that this problem is NP-hard.

Formally, a selection function E is a function that classifies each edge into one
of three categories: optional, required, exact. We call a walk which contains all the
required edges at least once, all the exact edges exactly once, and all the optional

5

edges any number of times an s-walk. The Minimum © -Walk Problem(MSWP) for
a weighted directed graph n and a selection function E is the problem of finding a
minimum weight cyclical E -walk of n , or report that one doesn’t exist.

Theorem 1. The Minimum E -Walk Problem is NP-hard.

The proof works by reducing the Hamiltonian Cycle problem in directed graphs
to MSWP. A cycle is Hamiltonian if it visits every vertex exactly once. The reduction
works by splitting each vertex into ’in’ and ’out’ counterparts and adding a required
edge between them, while making all other edges optional. Having optional edges is
essential for the reduction; if they are not present, the problem can be efficiently solved
using a variant of the algorithm of Section 5.1. Also note that in [10] the edges of the
string graph are bidirected in order to reflect the double strandedness of DNA. Since
directed graphs are a special type of bidirected graphs, Theorem 1 holds for bidirected
graphs as well.

Proof. Let n be a directed graph, with vertices � � $HFHFGFH$;� I , for which we wish to find
a Hamiltonian cycle. Let n«ª be a directed graph with vertex set CG� �T $;� mT �:���¬�s�¬­®K
and edge set ¯¬°l± , where ¯2	�CJ� mT LA�:�² �"8~� T LA� ² <¢- p 89n«<�K and ±�	�CJ�:�T L
� mT �S�¢�
�¦��­®K . The weight of each edge is 1. Let E be a selection function on n�ª that
labels all the ¯ edges as optional and all the ± edges as required. We show that n has
a Hamiltonian cycle if and only if n*ª has a cyclical E -walk of weight at most Vj­ .

First, suppose ³�	}��Tµ´¶L·FGFHF¦L¸��Tb¹�L¸��Tµ´ is a Hamiltonian cycle of n . Then
³¢ª�	��:�T ´ Lº� mT ´ L¤�g�Ta» L¤� mTb» L¼FGFHFRL¤�:�T ¹j½�´ Lº� mT ¹�½�´ L¤�:�T ´ is a cyclical E -walk
in nzª of weight V�­ . For the other direction, let ³zª be a cyclical E -walk in n«ª of length
at most V�­ . Because the ± edges form a matching and all ­ of them must be in ³�ª , the
edges of ³zª must alternate between ± and ¯ edges, and thus have a total of ­ edges of
each kind. If we remove all the ± edges from ³«ª and map all the vertices of ³«ª to their
counterparts in n , we get a Hamiltonian cycle of n . ¾¿

4 The de Bruijn Graph Framework.

One of the original graph-theoretic frameworks for sequence assembly was proposed
by Pevzner, Tang, and Waterman in [12]. They note that by tiling every read by 8���f1�J< -
mers they can view the read as a walk in a de Bruijn graph, where the vertices are
� -mers and edges are 8��*fÀ�7< -mers. Thus, any walk that contains all the reads as sub-
walks represents a valid assembly. Consequently, they formulate the assembly problem
as finding the shortest superwalk, a problem closely related to the polynomial time Eu-
lerian tour problem (which was previously used to solve the problem of sequencing by
hybridization [11]). What we show in this section is that the de Bruijn graph framework
does not make the problem of read assembly more tractable.

Let
B 	ÁC7E � $GFHFGFh$+EJI#K be a set of strings over an alphabet � and let nÂ	2[\/S8 B <

be the de Bruijn graph of
B

for some � . The strings EjT correspond to walks in [Y/S8 B <
via the function �*8�E7<�	 E��a�'FbF �c�ÃLÄE�� V`FaFe�«fÀ�h�ÃL¤FGFHF:LÄE��Å� Ec�'Q��*fÀ�'$7� Ec� � . A walk is
called a superwalk of n if, for all � , it contains �*8�EjT�< as a subwalk. Thus, a superwalk
represents a valid assembly of the reads into a genome. Within this framework, the goal

6

Æ Ç
Ç Æ

Ç Ç
Ç È

È Ç
Ç É É Ç

Ç Ê
Ê ÇÉ Ë É Ì

É Í É Î

Fig. 3. An example of the reduction from Shortest Common Superstring to De Bruijn Superwalk.
The set of strings Ï is over the alphabet

�
A,C,G,T � , and the graph drawn is Ð �JÑ9Ò#Ñ ÏPÓ�Ó . The cycles

in the edge decomposition are Ô®Õ , Ô§Ö , Ô§× , Ô®Ø and have three edges each. As an example, the
walk Ù Ñ9Ò#Ñ~Ú�Û¦Û Ó�Ó starts at the central node and is Ô Õ followed by Ô Ø followed by Ô Ø again.

of finding a parsimonious genome assembly is to find a minimal length superwalk. The
assembly algorithm of [12] looks for such a superwalk, however, it uses heuristics and
may not produce the correct answer.

Formally, given a set of strings
B

as defined above and a positive integer � , the De
Bruijn Superwalk Problem (BSP) is to find a minimum length superwalk in [\/`8 B < , or
report that one does not exist. Observe that since every edge in [�/S8 B < is covered by at
least one walk �*8�E7T(< , a superwalk will traverse every edge at least once. We shall show
that BSP is NP-hard by a reduction from the Shortest Common Superstring (SCS) prob-
lem. Informally, we will transform a string by inserting Ü�/ in between every character,
as well as in the beginning and end, where Ü is a special character that does not appear
in the input strings. For example, we transform the string ’abc’ into ’ Ü / a Ü / b Ü / c Ü / ’.
This transformation preserves overlaps and introduces a Ü�/ overlap between otherwise
non-overlapping strings. The idea is that while a superstring can be built by appending
non-overlapping strings, a superwalk must correspond to a string built by overlaps of
at least � characters. See Figure 3 for an illustration of the de Bruijn graph on a set of
transformed strings.

Theorem 2. The De Bruijn Superwalk Problem is NP-hard, for � �U�Ã0ÞÝ and for any
positive integer � .
Proof. SCS is NP-hard even if the size of the alphabet is 2 [5]. We reduce an instance
of SCS to an instance of BSP which has an additional character Ü in the alphabet.
Let
B 	OC7E � $HFHFGFh$+E I K be the set of strings of an SCS instance, and � be the set of

characters appearing in
B

. We define a function ß®8�E7<h� �&� for �«�¨���¬�"8+� Ec�Jf.�7<Rf�� Ec� as
follows: For all � divisible by �zf¬� , ß®8�E7<H� �&��	ÀE�� T/hm � � . For all other � , ß®8�E7<H� �&��	àÜ . Let
nD	�[�/S8&ß®8 B <;< , where ß®8 B <®	
C7ß®8&E T <��S�z���¦�
­®K .

We first make some observations about n , which follow directly from the defini-
tion of de Bruijn graphs and from ß . The vertices of n , which are the � -mers appear-
ing in ß®8 B < , are C�Ü*/�Kz°�CjÜ*/ � T ,"Ü T � � �§,Þ-)�M$G�á�Á�M�!�#K . The edges of n are
C p ���`,>-á�kK , where

p �M	2CjÜ*/�LºÜ*/ � � ,PK�°âCG,"Ü«/ � � LºÜ«/'K�°âCjÜ*/ � T ,�Ü T � � LÜ«/ � T � � ,�Ü T �ã�ä�{�\�å�¶Qà��K . The edge set of n forms a disjoint union of cycles

7

æ �'�yç ³ã� , where ³ã�\	
Ü«/*LAÜ«/ � � ,�LèÜ«/ � � ,�Ü)LéFGFHF`LèÜ¢,�Ü*/ � � LO,"Ü«/ � � L
Ü«/ . We also note that ��8�ß®8�E T <_<=	Þ�*8(Ü«/jE T �ê�H�~Ü*/¦FGFHF+Ü*/jE T �Å� Ec� �~Ü*/J<|	ë³ãìîí�ï �(ð L?FGFHF�L
³ãìîí�ï � ì�í � ð . For an illustration see Figure 3.

Now we show that the length of the shortest superwalk of n is �ifl� times the length
of the shortest superstring of

B
. First, suppose E is a superstring of

B
. Let �À	�³�ì%ï ��ð L

FHFHF®L¸³ñì+ï � ì � ð . We claim that � is a superwalk of n of length � Ec�a8��Yf
�7< . We have to
show that �*8&ß®8�EJT�<;< is a subwalk of � for all � . Since E7T is a substring of E , there is some
� and � such that EJTi	�Ey� �y$+��� . Then, �*8&ß®8�EJT�<;<¦	�³ñì+ï ² ð LèFHFHFcLO³ñì+ï / ð , which is indeed
a subwalk of � .

Now, suppose � is a superwalk of n . Every edge that appears before the first ÜY/
and after the last Ü*/ in � can be removed from � while preserving it as a superwalk.
Therefore, we can assume that the first and last vertex of � is Ü�/ , and � can be uniquely
expressed as a sequence of cycles ³ ² ´zL?FHFHF�LÄ³ ²§ò ó:òô;õ ´ . Let EJªi	À� � ��� � �H�G��� ò ógòô_õ ´ . For

all � , since �*8&ß®8�EJT(<_< is a subwalk of � , we can write it as �*8&ß®8�E7T(<_<s	ë³ ²(ö L?FGFHF#L
³ ² ö õ ò ó í òô_õ ´ ½�´ for some ÷ . By definition, �*8&ß®8�E7T(<_<�	�³ñì í ï ��ð LAFHFGF�LO³ñì í ï � ì í � ð . Since the

decomposition of a walk into cycles ³�� is unique, we conclude that E7T+� ���"	>�Jø mR/ � � for
�z�
�M�D� E T � . Therefore, E T is a substring of E , and E is a superstring of length

� ù§�
/�m � . ¾¿

5 Assembly of Double-Stranded DNA with Bidirected Flow

In this section, we demonstrate the first, to our knowledge, polynomial algorithm for
assembly of a double-stranded genome. First, we give a polynomial time algorithm
for solving the Chinese Postman Problem (CPP) on bidirected graphs. Subsequently,
we will show how to construct a bidirected de Bruijn graph from the set of � -long
molecules that are present in it (the � -molecule-spectrum). By solving the CPP on the
resulting graph we are able to reconstruct the shortest DNA molecule with the given� -molecule-spectrum.

5.1 The Bidirected Chinese Postman Problem

Given a weighted bidirected graph n , recall that the Chinese Postman Problem (CPP)
is to find a minimum weight Chinese walk of n , or report that one does not exist. CPP
is polynomially time solvable on both undirected and directed graphs [2]. It becomes
NP-Hard on mixed graphs, which are graphs with both directed and undirected edges
[5]. For undirected graphs, CPP is reducible to minimum cost perfect matchings. For
directed graphs, it is reducible to minimum cost network flow. In this section, we give
an efficient algorithm for solving CPP on bidirected graphs via a reduction to minimum
cost bidirected flow.

We will show in Lemma 2 that for n to have a Chinese walk it is necessary and suf-
ficient for it to be strongly connected. To find a min-weight Chinese walk, first consider
the case n is Eulerian. An Eulerian tour of n is also a Chinese walk, since it visits every
edge exactly once. Furthermore, since any Chinese walk has to visit every edge at least
once, the Eulerian tour is also a Chinese postman tour. In the general case, however,
when n is not Eulerian, our approach is to make the graph Eulerian by duplicating some

8

1: if ú is not connected then return ”no Chinese walk exists”
2: Use algorithm of [3] to solve the corresponding minimum cost bidirected flow (see text).
3: if there is no solution then return ”no Chinese walk exists”
4: Let úñû be the graph ú with

ÒHü
copies of every edge ý , in addition to ý itself.

5: Use a standard algorithm to find an Eulerian circuit Ô of úñû .
6: Relabel Ô according to Theorem 3.
7: return Ô

Fig. 4. Algorithm for the Chinese Postman Problem on bidirected graphs.

of the edges, and then using a standard algorithm to find an Eulerian tour. We shall prove
that if we minimize the total weight of the duplicated edges, the Eulerian tour we find
in the modified graph will correspond to a Chinese postman tour in the original graph.

Formally, we say a graph n«ª is an extension of n if it can be obtained from n by
duplicating some of its edges. The Eulerization Problem (EP) is to find a min-weight
Eulerian extension of n , or report that one does not exist. The following theorem shows
that CPP and EP are polynomially equivalent.

Theorem 3. There exists a Chinese walk of weight � if and only if there exists an Eule-
rian extension of weight � . Moreover, they can be derived from each other in polynomial
time.

Proof. For the only if direction, let � be a Chinese walk in n . Let þ� be the graph
induced by � , where the multiplicity of each edge is the number of time it is traversed
by � . Then þ� is an extension of n because � visits every edge at least once. Also �
is an Eulerian circuit of þ� whose weight is that of þ� . Thus þ� is an Eulerian extension
of n with weight of � .

For the if direction, let n«ª be an Eulerian extension of n . Let � ª be an Eulerian
circuit in n«ª . Construct � from �Dª by replacing every edge qjª¦ÿ-�n by an edge q*-�n
such that q ª is a duplicate of q . � is thus a valid cyclical walk in n which visits every
edge at least once and whose weight is the same as that of � ª and of nzª . ¾¿

Now, we give an algorithm for the Eulerization Problem. First, we consider the
case that n is not connected. Since any extension of n will also not be connected,
our algorithm can safely report that there is no Eulerian extension of n , and hence
no Chinese walk. For the case that n is connected, we formulate EP as a min-cost
bidirected flow problem. First, we represent an extension n�ª of n with � p 8�n«<H� variables,
where each variable ß'r represents the number of additional copies of edge q in n�ª . It is
clear that an assignment of non-negative integers to these variables corresponds to an
extension of n , and vice-versa. Now, we would like to formulate EP in terms of these
variables instead of in terms of an extension. The minimization criterion is the weight
of the extension, which is � � r 8î��fUß r < . The criterion that n«ª is Eulerian is, by Lemma
1, the criteria that it is connected and balanced. The connectivity criterion is redundant
since n is connected and thus any extension of n must also be connected. The balance
condition for each vertex , can be stated as: � r tyu�89,R$+q7<¦�Jß�r¦f
���c��u�8~,#<ñ	à@ . That is,
the balance of , in n«ª is the balance of , in n plus the contribution of all the copied
edges. We are now able to formulate EP as the following integer linear program:

9

minimize � ��rhß�r
subject to � r t u 8~,i$;qj<;ß'rã	 Qs���c� u 8~,�< for each vertex ,

ß r 0¨@ for each edge q
From the definition in Section 2.2, this is actually a minimum cost bidirected flow prob-
lem, which can be solved using Gabow’s algorithm [3]. Our final algorithm for CPP on
bidirected graphs is given in Figure 4. For the running time, we need to bound the size
of the solution:

Lemma 2. n has an Eulerian extension if and only if it is strongly connected. More-
over, the min-weight Eulerian extension has at most Vg� p �b� ok� edges.

Proof. If n has an Eulerian extension, then it must be connected, and for every edge
there is a cyclical walk containing it (namely the one induced by the Euler tour). Con-
versely, suppose that n is strongly connected. For every edge, we can duplicate all the
other edges of the shortest cyclical walk that contain it, thus balancing the graph. Now,
suppose n«ª is a min-weight Eulerian extension of n . We can decompose n*ª into a set
of minimal cycles. Each cycle must contain an edge that no other cycle contains, other-
wise it can be removed from n«ª to get a smaller weight extension. Therefore, there are
at most � p � cycles, and each cycle contains at most Vg� ok� edges. ¾¿
Gabow’s algorithm runs in time ¯Y8;� p � ������� 8+� oM� < ����� 8�³z<;< , where ³ is the largest ca-
pacity (³¼	
	���
�£�8�q7< using the definition of Section 2.2). By the above lemma,³è	A¯Y8+� o¶� �J< if the graph is simple, so the running time for finding the flow, and
thus for the whole algorithm, is ¯Y8;� p � ������� � 8+� oM� <;< .
5.2 The Bidirected de Bruijn Graph

In an earlier work [11], Pevzner showed that the de Bruijn graph [/ � � can be used to
represent the � -spectrum of a string, and that the (directed) Chinese postman tour on
this graph corresponds to the shortest string with the given � -spectrum. When working
with double-stranded DNA molecules, however, it is necessary to model � -molecules
instead of � -mers in the de Bruijn graph. To do this Pevzner includes both of the � -
mers associated with every � -molecule in the de Bruijn graph. He then searches for two
“complementary” walks, each corresponding to one of the DNA strands (see Figure 5).
Instead, we show how to construct a bidirected de Bruijn graph where each � -molecule
is represented only once.

Our input is the � -molecule-spectrum of the genome. We will arbitrarily label one
of the � -mers associated with each � -molecule as coming from the ”positive” strand and
the other from the ”negative” strand. Let the nodes of the bidirected de Bruijn graph be
all of the possible (�ãQl�)-molecules. For every � -molecule in the spectrum, let 5 be one
of its two � -mers. Let , and N be the 8���Q¶�J< -molecules corresponding to 5:�a�'FbFe��Q¶�h� and5:� VSFbF �c� , respectively. We make an edge between the vertices corresponding to , and N .

10

+AT

-AT

+AA

-TT

+CA

-TG

+GC

-GC

+CC

-GG

+AC

-GT

CC

GG

CA

TG

GC

AA

TT

AT

AC

GT

Fig. 5. Given the � -molecule-spectrum
�
ATT/AAT, TTG/CAA, TGC/GCA, GCC/GGC,

CCA/TGG, CAA/TTG, AAC/GTT, Pevzner et al.’s [12] approach builds the graph on the left,
and searches for two complementary paths. The bidirected de Bruijn graph is on the right; one
tour that includes all of the edges spells ATTGCCAAC on the forward strand, and GTTGGCAAT
on the reverse.

This edge is positive-incident to , if 5#�a�'FbF �ãQl�H� is the positive strand of , , and negative-
incident otherwise. It is negative-incident to N if 5#� VSFbF ��� is the positive strand of N , and
positive-incident otherwise. Note that this edge construction is identical to the one de-
fined by Kececioglu [8] for an overlap between two DNA molecules (also see Figure 1).

The Chinese postman tour of the resulting bidirected de Bruijn graph corresponds to
the shortest assembly of the DNA molecule with the given � -molecule-spectrum. The
proof follows from the construction: every � -molecule from the spectrum is represented
by exactly one edge in the graph. Every valid assembly of the genome corresponds to a
walk in the bidirected de Bruijn graph. Because the Chinese postman tour is the shortest
such walk, it is also the shortest assembly of the genome. The tour also corresponds to
both of the DNA strands. Because a walk is required to use edges with opposite ori-
entations to enter and leave every vertex, but is allowed to enter on either a positive
or negative oriented edge, the Chinese postman tour can be ”walked” in either of two
directions. If we enter a node on a positive-incident edge we use the positive k-mer,
if on the negative incident we use the negative k-mer. The two directions correspond
exactly to the two strands of DNA, and the sequences “spelled” by them are reverse-
complements. For the running time, because the de Bruijn graph has a constant degree
at every node (� p �:-��Y8;� ok� <), the overall running time is ¯Y8+� o¶� ������� � 8;� ok� <_< using the
algorithm of Section 5.1.

6 Discussion

In this work we showed that both the de Bruijn graph and string graph models for
sequence assembly are NP-hard. While this result makes it impractical to look for poly-
nomial time exact algorithms for either of these problems, we believe our work suggests
two important areas of investigation. The first is to characterize the computational dif-
ficulty of the genome assembly models on real-world genomes. It is well known that
many NP-hard problems are efficiently solvable when restricted to particular classes of
inputs. The success of both the de Bruijn and string graph models in practice indicate

11

that by defining a more restricted model of inputs that nevertheless covers most actual
genomes, we may be able to create a model for sequence assembly that can be solved
exactly in polynomial time. Simultaneously, real-life genomes contain repeats, making
it unlikely that any real genome will have a unique solution under either string graph
or de Bruijn graph assembly models. Consequently it is important to explore what a
realistic objective function for an assembly algorithm should be. Conducting a rigorous
study of these questions is a promising avenue for improving assembly programs.

In our second result we showed that the computational difficulty of sequence as-
sembly is not due to double-strandedness of DNA. By unifying Pevzner’s work on de
Bruijn graphs, Kececioglu’s and Myers’ work on bidirected graphs in assembly and Ed-
monds’ and Gabow’s work on bidirected flow, we are able to demonstrate an optimal
polynomial time assembly algorithm that explicitly deals with double-strandedness. We
believe the use of bidirected flow as a technique will be fruitful for other sequence as-
sembly problems, including for the assembly of short DNA reads coming from novel
sequencing technologies such as Illumina and 454.

Acknowlegments

We would like to thank Allan Borodin for helpful comments and careful reading of the
manuscript. This work was partially supported by an NSERC Discovery Grant to MB.

References

1. J. Edmonds. An introduction to matching. Notes of engineering summer conference, Uni-
versity of Michigan, Ann Arbor, 1967.

2. J. Edmonds and E.L. Johnson. Matching, Euler tours, and the Chinese postman. Mathemet-
ical Programming, 5:88–124, 1973.

3. Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In STOC, pages 448–456, 1983.

4. John Gallant, David Maier, and James A. Storer. On finding minimal length superstrings. J.
Comput. Syst. Sci., 20(1):50–58, 1980.

5. M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

6. John D. Kececioglu and Eugene W. Myers. Combinatiorial algorithms for DNA sequence
assembly. Algorithmica, 13(1/2):7–51, 1995.

7. John D. Kececioglu and David Sankoff. Exact and approximation algorithms for sorting by
reversals, with application to genome rearrangement. Algorithmica, 13(1/2):180–210, 1995.

8. John Dimitri Kececioglu. Exact and approximation algorithms for DNA sequence recon-
struction. PhD thesis, Tucson, AZ, USA, 1992.

9. Eugene W. Myers. Toward simplifying and accurately formulating fragment assembly. Jour-
nal of Computational Biology, 2(2):275–290, 1995.

10. Eugene W. Myers. The fragment assembly string graph. In ECCB/JBI, page 85, 2005.
11. P A Pevzner. 1-Tuple DNA sequencing: computer analysis. J Biomol Struct Dyn, 7(1):63–

73, Aug 1989.
12. P.A. Pevzner, H. Tang, and M.S. Waterman. An Eulerian path approach to DNA fragment

assembly. Proceedings of the National Academy of Sciences, 98:9748–9753, 2001.
13. Pavel A. Pevzner, Haixu Tang, and Glenn Tesler. De novo repeat classification and fragment

assembly. In RECOMB, pages 213–222, 2004.
14. Alexander Schrijver. Combinatorial Optimization, volume A. Springer, 2003.

12

